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Asymptotic Behavior of Solution to Some
Boundary Value Problem

V.B. Vasilyev∗, Sh.H. Kutaiba

Abstract. We consider an elliptic pseudo-differential equation in a plane sector with
additional integral condition. Using a formula for a general solution we study a limit
case in which the size of a sector tends to zero. It is shown that the function in the
boundary condition cannot be an arbitrary function, and it must satisfy some functional
singular integral equation.
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1. Introduction

The first author studied elliptic pseudo-differential equations in domains with
singular points at a boundary [14]. Using the local principle he considered the
equation [15, 16, 17]

(Au)(x) = v(x), x ∈ C, (1)

where C is a convex cone in Euclidean space Rm, A is a pseudo-differential
operator

(Au)(x) =

∫
C

∫
Rm

A(ξ)ei(x−y)·ξu(y)dξdy, x ∈ C,

with the symbol A(ξ) satisfying the condition

c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α.

∗Corresponding author.
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There are a lot of approaches for studying this problem. We wrote many
times on the methods of studying solvability of pseudo-differential equations in
domains with conical points and wedges (see, for example, [1, 2, 3, 4, 5, 6, 7] and
many others), but now we would like to speak on another aspect of the problem.

The main problem is obtaining conditions for unique solvability o the equation
(1) in appropriate functional spaces, or invertibility conditions for the operator
A. To describe such conditions a concept of the wave factorization for an elliptic
symbol was introduced [14]. Unfortunately, a number of solutions depends on an
index of the wave factorization [14] and to extract the unique solution one needs
some additional conditions.

Each singularity (half-space, cone, wedge, etc.) corresponds to some distribu-
tion, and a convolution with the distribution describes a local representative of an
initial pseudo differential operator in an appropriate point of manifold. All details
can be found in [14, 17, 19]. But singularities can be of different dimensions and
it is possible that singularities of lower dimensions are obtained from analogous
singularities of full dimension. It means we need to find distributions for limit
cases where some of parameters of singularities tend to zero. This approach was
partially realized in [15, 16], and the work [17] is dedicated to multi-dimensional
constructions.

Such problems have been considered from different points of view in [15, 16,
17, 18, 19, 20, 21, 22, 23]. Some results have been obtained in very special case
where the size of a cone tends to zero [21, 23]. There are some interesting results
concerning such cones. Here we consider simple plane case where one needs to
add some condition to the equation to obtain the unique solution.

2. Preliminaries and notations

We will use standard Sobolev–Slobodetskii spaces Hs(Rm) [8, 14] with the
norm

||u||2s =

∫
Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ,

and ∼ over a function will denote its Fourier transform

(Fu)(ξ) ≡ ũ(ξ) =

∫
Rm

eix·ξu(x)dx.

We consider 2-dimensional case and the cone Ca+ = {x ∈ R2 : x2 > a|x1|, a >
0} in the Sobolev–Slobodetskii space Hs(Ca+). The latter space consists of func-
tions from Hs(Rm) with support in Ca+.
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Let
∗
Ca+ be a conjugate of the cone Ca+:

∗
Ca+= {x ∈ R2 : x = (x1, x2), ax2 > |x1|},

Ca− ≡ −Ca+, T (Ca+) be a radial tube domain over the cone Ca+, i.e. a domain of
a two-dimensional complex space C2 of the type R2 + iCa+ [10, 11].

3. Wave factorization and structure of solution

Our study is based on the concept of wave factorization.

Definition 1. The wave factorization of an elliptic symbol A(ξ) is defined as its
representation in the form

A(ξ) = A 6=(ξ)A=(ξ),

where the factors A6=(ξ), A=(ξ) satisfy the following conditions:
1) A 6=(ξ), A=(ξ) are defined for all ξ ∈ R2, except maybe for {ξ ∈ R2 : |ξ1|2 =

a2ξ2
2};
2) A6=(ξ), A=(ξ) admit an analytic continuation into radial tube domains

T (
∗
Ca+), T (

∗
Ca−), respectively, with the estimates

|A±1
6= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−æ), ∀τ ∈

∗
Ca+ .

The number æ ∈ R is called an index of the wave factorization.

If the symbol A(ξ) admits the wave factorization [14] under the condition
1/2 < æ−s < 3/2, where æ is the index of wave factorization, then one can show
[17, 18] that a general solution of the equation (1) in Sobolev–Slobodetskii space
Hs(Ca+) in Fourier image has the following form:

ũ(ξ) =
c̃0(ξ1 + aξ2) + c̃0(ξ1 − aξ2)

2A 6=(ξ1, ξ2)
+

A−1
6= (ξ1, ξ2)

v.p. i
2π

+∞∫
−∞

c̃0(η)dη

ξ1 + aξ2 − η
− v.p. i

2π

+∞∫
−∞

c̃0(η)dη

ξ1 − aξ2 − η

 ,

(2)

where c0 is an arbitrary function from Hs−æ+1/2(R), and v.p. denotes principal
value of the integral in the Cauchy sense [9].
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3.1. Proof of the formula (2).

For reader’s convenience, we will describe here the scheme for obtaining a
general solution of the equation (1) using the wave factorization. In other words,
we will give proof for the formula (2).

Let us consider the equation (1) for the case æ− s = 1 + δ, |δ| < 1/2, only. A
general solution can be constructed as follows. After wave factorization for the
symbol with preliminary Fourier transform we get

A 6=(ξ)ũ(ξ) +A−1
= (ξ)ũ−(ξ) = A−1

= (ξ)l̃v(ξ),

where u−(x) = lv(x)−u(x), lv is an arbitrary continuation of v to the whole R2.
One can see that A−1

= (ξ)l̃f(ξ) belongs to the space H̃s−æ(R2), and if we choose
the polynomial Q(ξ), satisfying the condition

|Q(ξ)| ∼ 1 + |ξ|,

then Q−1(ξ)A−1
= (ξ)l̃f(ξ) will belong to the space H̃−δ(R2).

Further, according to the theory of multi-dimensional Riemann problem [14],
we can decompose the last function into two summands (jump problem):

Q−1A−1
= l̃v = f+ + f−,

where f+ ∈ H̃(Ca+), f− ∈ H̃(R2 \ Ca+).
So, we have

Q−1A 6=ũ+Q−1A−1
= ũ− = f+ + f−,

or
Q−1A 6=ũ− f+ = f− −Q−1A−1

= ũ−

In other words,
A6=ũ−Qf+ = Qf− −A−1

= ũ−.

The left-hand side of the last equality belongs to the space H̃−1−δ(Ca+), and

the right-hand side belongs to H̃−1−δ(R2 \ Ca+), hence

F−1(A 6=ũ−Qf+) = F−1(Qf− −A−1
= ũ−), (3)

where the left-hand side belongs to H−1−δ(Ca+), and the right-hand side belongs
to H−1−δ(R2 \Ca+), therefore we conclude immediately that this is a distribution
supported on ∂Ca+.

We introduce Ta : R2 −→ R2 of the following type:{
t1 = x1,

t2 = x2 − a|x1|.
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(obviously, it transforms ∂Ca+ one-to-one into the hyperplane x2 = 0).
To apply the Fourier transform to the formula (3), we need to obtain explicit

expression for FTa. This can be done in the following way. We calculate:

(FTau)(ξ) =

+∞∫
−∞

eia|y1|ξ2eiy1ξ1 û(y1, ξ2)dy1

=

+∞∫
−∞

χ+(y1)eiay1ξ2eiy1ξ1 û(y1, ξ2)dy1 +

+∞∫
−∞

χ−(y1)e−iay1ξ2eiy1ξ1 û(y1, ξ2)dy1

=

+∞∫
−∞

χ+(y1)eiy1(aξ2+ξ1)û(y1, ξ2)dy1 +

+∞∫
−∞

χ−(y1)eiy1(−aξ2+ξ1)û(y1, ξ2)dy1.

The last two summands are the Fourier transforms of the functions

χ+(y1)eiy1(aξ2+ξ1)û(y1, ξ2), χ−(y1)eiy1(−aξ2+ξ1)û(y1, ξ2)

with respect to the first variable y1, respectively, so we can use the following
properties ([7], Plemelj–Sokhotskii formulas [12, 13], and we write them for one
variable):

+∞∫
−∞

χ+(x)eixξu(x)dx =
1

2
ũ(ξ) + v.p.

i

2π

+∞∫
−∞

ũ(η)dη

ξ − η
,

+∞∫
−∞

χ−(x)eixξu(x)dx =
1

2
ũ(ξ)− v.p. i

2π

+∞∫
−∞

ũ(η)dη

ξ − η
.

Taking into account these properties, we have

(FTau)(ξ) =
ũ(aξ2 + ξ1, ξ2) + ũ(−aξ2 + ξ1, ξ2)

2

+v.p.
i

2π

+∞∫
−∞

ũ(η, ξ2)dη

aξ2 + ξ1 − η
− v.p. i

2π

+∞∫
−∞

ũ(η, ξ2)dη

−aξ2 + ξ1 − η
.

Taking into account a general form of a distribution from S′(R2) supported
on the straight line x2 = 0 [8, 10]

n∑
k=0

ck(x1)xk2,
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we conclude there is only one summand c0(x1) in the latter formula, because
æ − s = 1 + δ. Further, applying the operator FTa to the left-hand side of the
formula (3) we obtain the formula (2).

4. Limit analysis of factors

4.1. First limit case

It is about a half-space. Indeed, if a→ 0, this case corresponds to a half-space
case, and we have

ũ(ξ) =
c̃0(ξ1)

lim
a→0

A 6=(ξ1, ξ2)
.

Example 1. For the Laplacian ξ2
1 + ξ2

2, we have [14]

A 6=(ξ1, ξ2) =
√
a2 + 1ξ2 +

√
a2ξ2

2 − ξ2
1 ,

so as a→ 0 we obtain well known factorization factor from [8]

lim
a→0

A 6=(ξ1, ξ2) = ξ2 + i|ξ1|.

4.2. Second limit case

This case corresponds to the situation when the size of the cone becomes very
small, in other words, a→∞. Our main result is related to this case.

Example 2. If we are interested in second limit case a → +∞ for the same
symbol

A 6=(ξ1, ξ2) =
√
a2 + 1ξ2 +

√
a2ξ2

2 − ξ2
1 ,

looks like it will be infinite. But if we apply change of variables{
t1 = ξ1 + aξ2,
t2 = ξ1 − aξ2,

we will obtain

a 6=(t1, t2) = A 6=

(
t1 + t2

2
,
t1 − t2

2a

)
,

or after simple calculations

a 6=(t1, t2) =

√
a2 + 1

4a2
(t1 − t2) +

√
−t1t2,

so that

lim
a→+∞

a6=(t1, t2) =
1

2
(t1 − t2) +

√
−t1t2.
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Remark 1. In fact,

1

2
(t1 − t2) +

√
−t1t2 = lim

a→+∞
a6=(t1, t2) 6= A 6=

(
t1 + t2

2
, 0

)
=
i

2
|t1 + t2|,

because the parameter a affects the change of variables. Nevertheless, these values
coincide for t1 = t2.

5. The main result

We add to the equation (1) the following integral condition:

+∞∫
−∞

u(x1, x2)dx2 ≡ g(x1), (4)

and study a solvability of the boundary value problem (1),(3).
Given wave factorization

A(ξ1, ξ2) = A 6=(ξ1, ξ2) ·A=(ξ1, ξ2),

let us denote A 6=(t, 0)g̃(t) ≡ G(t) and lim
a→+∞

a6=(t1, t2) ≡ h(t1, t2) assuming that

latter limit exists. Further, we introduce the following one-dimensional functional
integral equation with respect to the function g̃:

2h(t1, t2)g̃

(
t1 + t2

2

)
= G(t1) +G(t2) + (SG)(t1)− (SG)(t2), (5)

where

(SG)(t) = v.p.
i

π

+∞∫
−∞

G(η)dη

t− η
.

Now we are ready to formulate and prove our main result.

Theorem 1. If the symbol A(ξ1, ξ2) admits the wave factorization with respect
to Ca+ for sufficiently large a, then the boundary value problem (1),(4) is solvable
if and only if the right-hand side g satisfies the equation (5) as a→ +∞.

Proof. Let us denote

v.p.
i

π

+∞∫
−∞

c̃0(η)dη

ξ1 + aξ2 − η
≡ d̃0(ξ1 + aξ2),

v.p.
i

π

+∞∫
−∞

c̃0(η)dη

ξ1 − aξ2 − η
≡ d̃0(ξ1 − aξ2).

(6)
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Then we have

ũ(ξ1, ξ2) =
c̃0(ξ1 + aξ2) + c̃0(ξ1 − aξ2) + d̃0(ξ1 + aξ2)− d̃0(ξ1 − aξ2)

2A 6=(ξ1, ξ2)
≡

c̃(ξ1 + aξ2) + d̃(ξ1 − aξ2)

2A 6=(ξ1, ξ2)
, (7)

where c̃(ξ1 +aξ2) ≡ c̃0(ξ1 +aξ2)+ d̃0(ξ1 +aξ2), d̃(ξ1−aξ2) ≡ c̃0(ξ1−aξ2)− d̃0(ξ1−
aξ2).

For the Fourier images, the condition (4) means the following:

ũ(ξ1, 0) = g̃(ξ).

Then, according to the formula (2), we have

c̃0(ξ1)

A 6=(ξ1, 0)
= g̃(ξ1).

Thus, at least formally we can find the function

c̃0(ξ1) = A 6=(ξ1, 0)g̃(ξ1)

and then using formulas (6) we find d̃0(ξ1). Hence, the formula (7) gives the
solution of the equation (1). Finally, the solution of the equation (1) under the
condition (4) takes the following form:

ũ(ξ1, ξ2) =
A 6=(ξ1 + aξ2, 0)g̃(ξ1 + aξ2) +A6=(ξ1 − aξ2, 0)g̃(ξ1 − aξ2)

2A 6=(ξ1, ξ2)
+

1

2A 6=(ξ1, ξ2)
v.p.

i

π

+∞∫
−∞

A 6=(η, 0)g̃(η)dη

ξ1 + aξ2 − η
− 1

2A 6=(ξ1, ξ2)
v.p.

i

π

+∞∫
−∞

A6=(η, 0)g̃(η)dη

ξ1 − aξ2 − η
.

Let us apply the change of variables{
t1 = ξ1 + aξ2,
t2 = ξ1 − aξ2,

and denote

a6=(t1, t2) ≡ A 6=
(
t1 + t2

2
,
t1 − t2

2a

)
.

Then, denoting Ũ(t1, t2) ≡ ũ
(
t1+t2

2 , t1−t22a

)
, we can write
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Ũ(t1, t2) =
A 6=(t1, 0)g̃(t1) +A 6=(t2, 0)g̃(t2)

2a 6=(t1, t2)
+

1

2a6=(t1, t2)
v.p.

i

π

+∞∫
−∞

A 6=(η, 0)g̃(η)dη

t1 − η
− 1

2a 6=(t1, t2)
v.p.

i

π

+∞∫
−∞

A6=(η, 0)g̃(η)dη

t2 − η
.

Therefore, we have the following relation as a→ +∞:

ũ

(
t1 + t2

2
, 0

)
= Ũ(t1, t2) =

A 6=(t1, 0)g̃(t1) +A 6=(t2, 0)g̃(t2)

2a 6=(t1, t2)
+

1

2a(t1, t2)
v.p.

i

π

+∞∫
−∞

A 6=(η, 0)g̃(η)dη

t1 − η

− 1

2a6=(t1, t2)
v.p.

i

π

+∞∫
−∞

A 6=(η, 0)g̃(η)dη

t2 − η
.

(8)

Taking into account our notations, we see that the relation (8) coincides with the
equation (5). This completes the proof. J

Conclusion

Some plane problems have been considered in this work. The approach used
here can be also applied in a multidimensional space. Such situations will be
studied in our forthcoming papers.
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Analytic Aspects. Birkhäuser, Boston, 2011, pp. 379-390.

[22] V.B. Vasil’ev, Pseudodifferential equations in cones with conjugate points on
the boundary, Differ. Equ., 51(9), 2015, 1113-1125.

[23] V.B. Vasilyev, On the asymptotic expansion of certain plane singular integral
operators. Bound. Value Probl., 115, 2017, 13 pp.

Vladimir B. Vasilyev
Chair of Applied Mathematics and Computer Modeling,
Belgorod State National Research University,
Pobedy street 85, Belgorod 308015, Russia
E-mail: vbv57@inbox.ru

Shaban H. Kutaiba
Chair of Applied Mathematics and Computer Modeling,
Belgorod State National Research University,
Pobedy street 85, Belgorod 308015, Russia
E-mail: 1167542@bsu.edu.ru

Received 24 July 2021
Accepted 01 March 2022


