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Orlicz spaces.
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1. Introduction

In the present study, we will focus on approximation problems in Smirnov-
Orlicz spaces, which we will mention later.

The Smirnov-Orlicz space, which is the more general form of the Smirnov
space, has been firstly introduced by V. Kokilashvili in [26], where some in-
verse theorems of approximation theory have been investigated in Smirnov-Orlicz
spaces on domains with Dini-smooth boundary. In these spaces, some approx-
imation problems have been investigated by several researchers using different
modulus of smoothness and different domains. Some direct theorems of trigono-
metric approximation in Smirnov-Orlicz space were proved for domains bounded
by Carleson curves and for domains bounded by Dini smooth curves in [18] and
in [21], respectively. The modulus of continuity used in [21] is simpler than
the one considered in [18]. Some direct and inverse theorems of the polynomial
approximation in weighted Smirnov-Orlicz spaces were proved on domains with
Dini-smooth boundary in [2, 20]. In [3], the convergence property of the inter-
polating polynomial based on the zeros of Faber polynomials in Smirnov-Orlicz
space were investigated on domain with bounded rotation curve without cusps. In
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[4], some approximation problems in the Smirnov-Orlicz spaces were investigated
in terms of the fractional modulus of smoothness. Thus, the direct and inverse
theorems of the approximation theory were proved by considering the fractional
modulus of smoothness. In [5], the direct and converse theorems of approxima-
tion by algebraic polynomials and rational functions in weighted Smirnov-Orlicz
spaces were proved. In [22], the approximation properties of the Faber–Laurent
rational series expansions in Smirnov-Orlicz spaces were studied with doubly-
connected domain bounded by Dini-smooth curves. In [23], the direct theorem
of polynomial approximation was proved in weighted Smirnov-Orlicz spaces.

We extend the results obtained in the Lebesgue spaces in [35] to the weighted
Orlicz and Smirnov-Orlicz spaces. Moreover, similar approximation theorems in
weighted Orlicz space were proved in [24]. We note that, since we use the matrix
method τλn (x, f) based on Riesz submethod instead of the matrix method based
on Nörlund submethod, our main results are different from the results given in
[24] even if classical methods are used.

Considering these studies in the literature, it is seen that approximation prob-
lems in terms of matrix transforms were not examined in the weighted Smirnov-
Orlicz spaces. In this study, approximation properties of matrix transforms ob-
tained by Faber series are examined and some approximation theorems in the
weighted Smirnov-Orlicz spaces are proved. In Section 2, we obtain trigonomet-
ric approximation results by matrix transforms via Fourier series in weighted
Orlicz spaces with Muckenhoupt weights. Based on these approximation theo-
rems, we prove two theorems of approximation by matrix transforms of Faber
series in weighted Smirnov-Orlicz spaces in Section 3.

Also, we note that the Orlicz spaces have been used for applications in me-
chanics, fluid dynamics, applied mathematics, regularity theory and statistical
physics in [1, 12, 42]. Hence, results related to trigonometric approximation using
submethods of Fourier series of functions in the Orlicz spaces are also important
in these research areas.

2. Some Approximation Problems In Weighted Orlicz Spaces

Let T:= [0, 2π]. Let Lp(T) be the Lebesgue space of 2π periodic real valued
functions defined on T such that

‖f‖p :=

∫
T

|f (x)|p dx

 1
p

<∞, (1 < p <∞, f ∈ Lp(T)) .

Let M : [0,∞)→ [0,∞) be a convex and continuous function with M (0) = 0,
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M (u) > 0 for u > 0. If M (u) is an even function and it satisfies the conditions

lim
u→0

M (u)

u
= 0 and lim

u→∞

M (u)

u
=∞,

then M (u) is called a Young function [28, p. 9].
Let M be a Young function. The function N defined as

N (ν) := max {uν −M (u) : u ≥ 0}

is called the complementary Young function for ν ≥ 0 [28, p. 13].
The class of all measurable functions f : T→ R satisfying the condition

2π∫
0

M (|f (x)|) dx <∞

will be denoted by L̃M (T).
The linear span of L̃M (T) equipped with the Orlicz norm

‖f‖M := sup


2π∫
0

|f (x) g (x)| dx : g ∈ L̃N (T),

2π∫
0

N (|f (x)|) dx ≤ 1

 ,

or with the Luxemburg norm

‖f‖∗M := inf

k > 0 :

2π∫
0

M

(
|f (x)|
k

)
dx ≤ 1


becomes a Banach space. This Banach space is called the Orlicz space generated
by M [30, p. 60-69].

Note that, the Orlicz space LM (T) is known as one of the generalizations of
the Lebesgue space Lp(T), 1 < p <∞. If we take Mp(u) := up

p , 1 < p <∞, then
the space LM (T) turns into the Lebesgue space Lp(T). Every function in LM (T)
is integrable on T [39, p. 50], i.e.

LM (T)⊂L1(T).

For detailed information about the Orlicz spaces, we refer to [11, 27, 28, 31,
39].

The Orlicz and Luxemburg norms satisfy the inequalities

‖f‖∗M ≤ ‖f‖M ≤ 2 ‖f‖∗M , f ∈ LM (T),
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and hence they are equivalent. Furthermore, the Orlicz norm can be determined
by means of the Luxemburg norm [28, p. 79-80] as

‖f‖M := sup


2π∫
0

|f (x) g (x)| dx : ‖g‖∗N ≤ 1

 .

The Hölder inequalities for every f ∈ LM (T) and g ∈ LN (T) are given [28, p.
80] as

2π∫
0

|f (x) g (x)| dx ≤ ‖f‖M ‖g‖
∗
N ,

2π∫
0

|f (x) g (x)| dx ≤ ‖f‖∗M ‖g‖N .

Let M−1 : [0,∞)→ [0,∞) be the inverse of the Young function M and

h (t) := lim sup
x→∞

M−1 (x)

M−1 (t/x)
, t > 0.

The numbers αM and βM defined by

αM := lim
t→∞

− log h (t)

log t
and βM := lim

t→0+

− log h (t)

log t

are called the lower and upper Boyd indices [10]. It is known that these indices
satisfy the conditions

0 ≤ αM ≤ βM ≤ 1

and

αM + βN = 1 and αN + βM = 1.

These indices were firstly considered by Matuszewska and Orlicz [32].

The Orlicz space LM (T) is reflexive if and only if 0 < αM ≤ βM < 1, i.e. if
the Boyd indices are nontrivial.

If 1 ≤ q < 1
βM
≤ 1

αM
< p ≤ ∞, then Lp(T) ⊂LM (T) ⊂Lq(T), the inclusions

being continuous and hence L∞(T) ⊂LM (T) ⊂L1(T) [11, p. 340].

For detailed information about the Boyd indices, we refer to [9, 10, 25, 31].

A measurable 2π-periodic function ω : T→ [0,∞] is called a weight function
if the set ω−1({0,∞}) has the Lebesgue measure zero.
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The class of measurable functions f defined on T and satisfying the condition
ωf ∈ LM (T) is called weighted Orlicz space LM (T,ω) with the norm

‖f‖M,ω := ‖ωf‖M .

From Hölder inequality it follows that if ω ∈ LM (T) and 1
ω ∈ LN (T), then

L∞ (T)⊂LM (T,ω)⊂L1 (T) .
Let 1 < p <∞, 1

p + 1
q = 1. The weight functions ω used in this section belong

to the Muckenhoupt class Ap(T) which is defined by 1

|I|

∫
I

ωp(x)dx

 1
p
 1

|I|

∫
I

ω−q(x)dx

 1
q

≤ C

with a finite constant C independent of I, where I is any subinterval of T and
|I| denotes the length of I.

For detailed information about the Muckenhoupt class, we refer to [11, 36].
The best approximation of f ∈ LM (T,ω) by polynomials in Tn is defined by

En(f)LM (T,ω) := inf
Tn∈Tn

‖f − Tn‖M,ω

where Tn is the set of trigonometric polynomials of degree ≤ n.
Let LM (T,ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤ βM < 1

and ω ∈ A 1
αM

(T)∩ A 1
βM

(T) . The k-modulus of smoothness of the function

f ∈ LM (T,ω) is defined as

Ωk
M,ω (f, δ) = sup

0 < hi ≤ δ
1 ≤ i ≤ k

∥∥∥∥∥
k∏
i=1

(I − σhi) f

∥∥∥∥∥
M,ω

, δ > 0,

where I is the identity operator and

(σhf) (x) :=
1

2h

h∫
−h

f(x+ t)dt, 0 < h < π, x ∈ T.

The modulus of smoothness Ωk
M,ω (f, δ) is well defined because σh is a bounded

linear operator on LM (T,ω) [19, Lemma 1] under the conditions 0 < αM ≤ βM <
1 and ω ∈ A 1

αM

(T)∩ A 1
βM

(T) .

The modulus of continuity Ωk
M,ω (f, δ) is defined in this way, since the space

LM (T,ω) is non-invariant, in general, under the usual shift f (x)→ f (x+ h) .
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If k = 0 we write Ω0
M,ω (f, δ) = ‖f‖M,ω and if k = 1 we write ΩM,ω (f, δ) =

Ω1
M,ω (f, δ) . The modulus of smoothness Ωk

M,ω (f, ·) is a nondecreasing, nonneg-
ative, continuous function and

Ωk
M,ω (f + g, δ) ≤ Ωk

M,ω (f, δ) + Ωk
M,ω (g, δ)

for f, g ∈ LM (T,ω).
For 0 < γ, let k = [γ2 ] + 1. The generalized Lipschitz class Lip (γ, LM (T,ω))

is defined as

Lip (γ, LM (T,ω)) =
{
f ∈ LM (T,ω) : Ωk

M,ω (f, δ) = O (δγ) , δ > 0
}
.

Since LM (T,ω) ⊂ L1, we can define the Fourier series of f ∈ LM (T,ω) as

f (x) v
a0 (f)

2
+
∞∑
k=1

(ak (f) cos kx+ bk (f) sin kx) (1)

and the conjugate Fourier series as

f̃ (x) v
a0 (f)

2
+
∞∑
k=1

(ak (f) sin kx− bk (f) cos kx) .

Here a0 (f) , ak (f) , bk (f) , k = 1, ..., are Fourier coefficients of f . Let Sn(x, f)
(n = 0, 1, 2, ...) be the nth partial sum of the series (1) at the point x, that is,

Sn(x, f) :=

n∑
k=0

Uk(x, f),

where

U0(x, f) =
a0

2
, Uk(x, f) = ak (f) cos kx+ bk (f) sin kx, k = 1, 2, ....

Let (λn)∞n=1 be a strictly increasing sequence of positive integers. For a se-
quence (xk) of real or complex numbers, the Cesàro submethod Cλ is defined
by

(Cλx)n :=
1

λn

λn∑
k=1

xk, (n = 1, 2, ...).

In particular, when λn = n, we note that (Cλx)n is the classical Cesàro
method C1. Therefore, the Cesàro submethod Cλ yields a subsequence of the
Cesàro method C1. The basic properties of the method Cλ were investigated
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firstly by Armitage and Maddox [6] and Osikiewicz [37]. In these works, the rela-
tions between the classical Cesàro method and Cesàro submethod were obtained.
Further information about the method Cλ can be found in [6, 37].

We denote by A ≡ (an,k) a lower triangular regular matrix with nonnegative

entries and let S
(A)
n (n = 0, 1, ...) be the row sums of this matrix, that is

S(A)
n =

n∑
k=0

an,k.

We define

τλn (x, f) :=

λn∑
k=0

aλn,kSk(x, f), n = 0, 1, 2, .... (1.5)

A nonnegative sequence u := (un) is called almost monotone decreasing (in-
creasing), if there exists a constant K := K(u), depending on the sequence u
only, such that un ≤ Kum (Kun ≥ um) for all n ≥ m. Such sequences will be
denoted by u ∈ AMDS (u ∈ AMIS) .

Let

An,k :=
1

k + 1

k∑
i=1

an,i.

If {An,k} ∈ AMDS ({An,k} ∈ AMIS) , then we will say that {an,k} is an
almost monotone decreasing (increasing) mean sequence with respect to k =
1, 2, ..., n for all n. Briefly, we will write {an,k} ∈ AMDMS ({an,k} ∈ AMIMS) .
For detailed information see [34].

The relation � is defined as ”A � B ⇔ there exists a positive constant C,
independent of essential parameters, such that A ≤ CB”. The operator ∆k is
defined by ∆kςn,k = ςn,k − ςn,k+1.

We shall use the following lemmas for proving our main theorems.

Lemma 1. [24] Let f ∈ Lip (γ, LM (T,ω)) , ω ∈ A 1
αM

(T)∩ A 1
βM

(T), 0 < γ ≤ 1,

and 0 < αM ≤ βM < 1. Then, the estimate

‖f − Sn (f)‖LM (T,ω) = O
(
n−γ

)
(4.2)

holds for n = 1, 2, ....

Lemma 2. [24] Let f ∈ Lip (1, LM (T,ω)) , ω ∈ A 1
αM

(T)∩ A 1
βM

(T), and 0 <

αM ≤ βM < 1. Then, the estimate

‖Sn (f)− σn(f)‖LM (T,ω) = O
(
n−1

)
(4.3)

holds for n = 1, 2, ....
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Lemma 3. [35] Let (an,k) be a lower triangular matrix with nonnegative entries
and row sums 1. If (an,k) ∈ AMIMS or (an,k) ∈ AMDMS and (n+ 1) an,0 =
O (1) , then

n∑
k=0

(k + 1)−γ an,k = O((n+ 1)−γ)

holds for 0 < γ < 1.

Trigonometric approximation results obtained by Cesàro submethod Cλ have
been studied by many researchers in [7, 8, 13, 14, 15, 29, 30, 33, 40].

But in these papers degree of approximation using matrix methods obtained
by Cesàro submethod were not investigated in the weighted Orlicz spaces.

In this section, we examine trigonometric approximation by the matrix
method τλn (x, f) to the functions in weighted Orlicz spaces with the degree of
O (λ−αn ) (0 < α ≤ 1).

Our new results in weighted Orlicz spaces are the following:

Theorem 1. Let f ∈ Lip (γ, LM (T,ω)) , ω ∈ A 1
αM

(T)∩ A 1
βM

(T) and A = (aλn,k)

be a lower triangular matrix with nonnegative entries and row sums 1. If one of
the following conditions

(i) 0 < γ < 1 and {aλn,k} ∈ AMIMS,

(ii) 0 < γ < 1, {aλn,k} ∈ AMDMS and (λn + 1) aλn,0 = O (1) ,

holds, then ∥∥∥f (·)− τλn (·, f)
∥∥∥
L
M

(T,ω)
= O

(
λ−γn

)
.

Proof. Since

τλn (x, f)− f (x) =

λn∑
k=0

aλn,kSk(x, f)− f (x) ,

using Lemma 1 and Lemma 3 we have∥∥∥τλn (·, f)− f (·)
∥∥∥
L
M

(T,ω)
≤

λn∑
k=0

aλn,k ‖Sk(f)− f‖L
M

(T,ω)

= O

(
λn∑
k=0

aλn,k(k + 1)−γ

)
= O(λ−γn ).

J
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Theorem 2. Let f ∈ Lip (1, LM (T,ω)) , ω ∈ A 1
αM

(T)∩ A 1
βM

(T) and A = (aλn,k)

be a lower triangular matrix with nonnegative entries and row sums 1. If the
following condition

λn−2∑
k=0

|∆kAλn,k| = O
(
λ−1
n

)
holds, then ∥∥∥f (·)− τλn (·, f)

∥∥∥
L
M

(T,ω)
= O

(
λ−1
n

)
.

Proof. For γ = 1, applying Abel’s transformation two times, we get

τλn (x, f)− f (x) =

λn∑
k=0

aλn,k [Sk(x, f)− f (x)]

=

λn−1∑
k=0

[Sk(x, f)− Sk+1(x, f)]
k∑
i=0

aλn,i

+ [Sn(x, f)− f (x)]

= Sn(x, f)− f (x)−
λn−2∑
k=0

(Aλn,k −Aλn,k+1)
k∑
i=0

(i+ 1)Ui+1(x, f)

−Aλn,λn−1

λn−1∑
k=0

(k + 1)Uk+1(x, f)

= Sn(x, f)− f (x)−
λn−2∑
k=0

(Aλn,k −Aλn,k+1)×

k∑
i=0

(i+ 1)Ui+1(x, f)− 1

λn

λn−1∑
i=0

aλn,i

λn−1∑
k=0

(k + 1)Uk+1(x, f).

Therefore by Minkowski inequality, we get∥∥∥τλn (·, f)− f (·)
∥∥∥
L
M

(T,ω)
≤ ‖Sn(f)− f‖L

M
(T,ω)+

λn−2∑
k=0

|∆kAλn,k|

∥∥∥∥∥
k+1∑
i=1

iUi(·, f)

∥∥∥∥∥
L
M

(T,ω)

+
1

λn

∥∥∥∥∥
λn∑
k=1

kUk(·, f)

∥∥∥∥∥
L
M

(T,ω)

. (2)

Then,

Sn(x, f)− σn(x, f) =
1

λn + 1

λn∑
k=1

kUk(x, f).
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Therefore, by Lemma 2∥∥∥∥∥
λn∑
i=1

iUi (·, f)

∥∥∥∥∥
L
M

(T,ω)

= (λn + 1) ‖Sn(f)− σn(f)‖L
M

(T,ω) = O (1) . (3)

If
λn−1∑
k=0

|∆kAλn,k| = O
(
λ−1
n

)
,

then, from (2) and (3) we get

∥∥∥f (·)− τλn (·, f)
∥∥∥
L
M

(T,ω)
= O

(
λ−1
n

)
+O (1) ·

λn−1∑
k=0

|∆kAλn,k|

= O
(
λ−1
n

)
.

Therefore, the proof is completed. J

Remark 1. When aλn,k =
p
λn,k

Pk
, the matrix submethod τλn (x, f) turns into the

Riesz submethod Rλn(x, f) given as

Rλn(x, f) :=
1

Pn

λn∑
k=0

p
λn,k

Sk(x, f),

where Pλn = p0+p1+p2+...+pλn 6= 0 (n > 0) and by convention p−1 = P−1 = 0.

Remark 2. Also, in the case pn = 1, n ≥ 0, λn = n, Rλn(x, f) turns into the
classical Cesàro method

σn(x, f) =
1

n+ 1

n∑
m=0

Sm(x, f).

Corollary 1. Let f ∈ Lip (γ, LM (T,ω)) , 0 < αM ≤ βM < 1, ω ∈ A 1
αM

(T)∩
A 1
βM

(T), 0 < γ ≤ 1 and let (pk) be a sequence of positive real numbers. If one

of the following conditions

(i) 0 < γ < 1 and {pk} ∈ AMIMS,

(ii) 0 < γ < 1, {pk} ∈ AMDMS and (λn + 1) pλn = O (Pλn) ,

(iii) γ = 1,
λn−1∑
k=0

∣∣∣∆k
pk
k+1

∣∣∣ = O
(
Pλn
λn

)
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holds, then we have ∥∥∥f (·)−Rλn (·, f)
∥∥∥
L
M

(T,ω)
= O

(
λ−γn

)
.

Note: Our main theorems give the error(or degree) of estimation in terms of
λ−αn (0 < α ≤ 1), which is sharper than the results given using classical methods,
because of λ−αn ≤ n−α for 0 < α ≤ 1.

3. Some Approximation Problems In Weighted Smirnov-Orlicz
Spaces

Let Γ be a rectifiable Jordan curve in the complex plane C and G− := Ext
Γ, G := Int Γ. Without loss of generality we may assume 0 ∈ G. Let
D := {w ∈ C : |w| < 1} , T : = ∂D, D− : =extT and w = ϕ (z) be the conformal
mapping of G− onto D− normalized by the conditions

ϕ (∞) =∞, lim
z→∞

ϕ (z)

z
> 0,

and let ψ := ϕ−1 be the inverse mapping of ϕ.
We denote by Lp (Γ) and Ep (G) , 1 < p < ∞, the set of all measurable

complex valued functions such that |f |p is Lebesgue integrable with respect to
the arc length on Γ and Smirnov space of analytic functions in G, respectively.
Each function f ∈ Ep (G) has a non-tangential limit almost everywhere on Γ,
and if we use the same notation for the non tangential limit of f , then f ∈ Lp (Γ)
[17, p. 438].

Let h be a continuous function on [0, 2π] . Its modulus of continuity is defined
by

ω (t, h) := sup {|h (t1)− h (t2)| : t1, t2 ∈ [0, 2π] , |t1 − t2| ≤ t} , t ≥ 0.

The function h is called Dini-continuous if

π∫
0

ω (t, h)

t
dt <∞.

Γ is called Dini-smooth curve if it has a parametrization

Γ : ϕ0 (τ) , 0 ≤ τ ≤ 2π

such that ϕ
′
0 (τ) is Dini-continuous and ϕ

′
0 (τ) 6= 0 [38, p. 48]. We denote the set

of Dini smooth curves by D.
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If Γ is a Dini-smooth curve, then

0 < c1 ≤
∣∣∣ψ′ (ω)

∣∣∣ ≤ c2, |ω| ≥ 1, (4)

0 < c3 ≤
∣∣∣ϕ′ (z)∣∣∣ ≤ c4, z ∈ G−,

hold. Here c1, c2 and c3, c4 are constants independent of ω and z, respectively.
We denote by LM (Γ) the linear space of Lebesgue measurable functions f :

Γ→ C satisfying the condition∫
Γ

M [α |f (z)|] |dz| <∞

for some α > 0.
The space LM (Γ) becomes a Banach space with the Luxemburg norm

‖f‖L(M)(Γ) := inf {τ > 0 : ρ (f/τ ;M) ≤ 1} ,

and also with the Orlicz norm

‖f‖LM (Γ) := sup


∫
Γ

|f (z) g (z)| |dz| : g ∈ LN (Γ) ; ρ (g;N) ≤ 1

 ,

where N is the complementary N -function to M and

ρ (g;N) :=

∫
Γ

N [|g (z)|] |dz| .

The Banach space LM (Γ) is called Orlicz space.
The class of measurable functions f defined on Γ and satisfying the condition

ωf ∈ LM (Γ) is called weighted Orlicz space LM (Γ,ω) with the norm

‖f‖LM (Γ,ω) := ‖ωf‖LM (Γ) .

For z ∈ Γ and ε > 0, let Γ (z, ε) denote the portion on Γ contained in the
open disc of radius ε and centered at z, i.e. Γ (z, ε) := {t ∈ Γ : |t− z| < ε} .

For fixed p ∈ (1,∞) , we define q ∈ (1,∞) by p−1 + q−1 = 1. The set of all
weights ω : Γ→ [0,∞] satisfying the relation

sup
t∈Γ

sup
ε>0

1

ε

∫
Γ(z,ε)

ω (τ)p |dτ |


1/p1

ε

∫
Γ(z,ε)

ω (τ)−q |dτ |


1/q

<∞

is denoted by Ap (Γ) .



84 A.H. Avsar, Y.E. Yildirir

Definition 1. For a weight ω on Γ, the weighted Smirnov-Orlicz class EM (G,ω)
is defined as the sub-class of analytic functions of E1 (G) whose boundary value
functions belong to weighted Orlicz space LM (Γ, ω) .

Let Γ be a rectifiable Jordan curve in the complex plane C. For p > 1 a class
of Lp(Γ) is defined as Lebesgue measurable functions f : Γ → R satisfying the
condition ∫

Γ

|f (z)|p |dz|

 1
p

<∞.

The class Lp(Γ) is a Banach space with respect to the norm

‖f‖Lp(Γ) :=

∫
Γ

|f (z)|p |dz| <∞

 1
p

<∞.

We denote by Lp(Γ,ω) the set of all measurable functions f : Γ → C such
that |f |ω ∈ Lp(Γ), 1 < p <∞.

Definition 2. For a weight ω on Γ, the weighted Smirnov-Orlicz class EM (G,ω)
is defined as the sub-class of analytic functions of E1 (G) whose boundary value
functions belong to weighted Orlicz space LM (Γ, ω) .

The Smirnov space Ep (G) of analytic functions in G is defined as

Ep (G) :=
{
f ∈ E1 (G) : f ∈ Lp(Γ)

}
.

Ep (G) is a Banach space with respect to the norm

‖f‖Ep(G) :=

∫
Γ

|f (z)|p |dz| <∞

 1
p

<∞.

Definition 3. For a weight ω on Γ, the weighted Smirnov-Orlicz class EM (G,ω)
is defined as the sub-class of analytic functions of E1 (G) whose boundary value
functions belong to weighted Orlicz space LM (Γ, ω) .

The class of functions f analytic in G and satisfying

sup
0<r<1

∫
Γr

M [|f (z)| |dz|] ≤ c <∞

with c independent of r, will be called Smirnov-Orlicz class and denoted by
EM (G) .
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The weighted Smirnov-Orlicz space EM (G,ω) is a generalization of the
Smirnov space Ep (G) . In particular, if M (x) := xp, 1 < p < ∞, then the
weighted Smirnov-Orlicz space EM (G,ω) coincides with the weighted Smirnov
space Ep (G, ω) ; if ω := 1, then EM (G,ω) coincides with the Smirnov-Orlicz
space EM (G) , defined in [26].

Let Γ be a rectifiable Jordan curve and f ∈ L1 (Γ) . Then the functions f+

and f− defined by

f+ (z) : =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ, z ∈ G,

f− (z) : =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ, z ∈ G−

are analytic in G and G− respectively, and f− (∞) = 0.
For g ∈ LM (T, ω) we set

σh (g) (ω) :=
1

2h

h∫
−h

g
(
ωeit

)
dt, 0 < h < π, ω ∈ T.

If αM and βM are nontrivial and ω ∈ A 1
αM

∩A 1
βM

(T) , then by [19] we have

‖σh (g)‖LM (T,ω) � ‖g‖LM (T,ω)

and consequently σh (g) ∈ LM (T, ω) for any g ∈ LM (T, ω) .
Let ω0 (w) := ω (ψ (w)) and f0 (w) := f (ψ (w)) for a weight ω on Γ, f ∈

LM (Γ, ω) and w ∈ T. By (4) we have

f0 ∈ LM (T, ω0) for f ∈ LM (Γ, ω) . (5)

Using the nontangential boundary values of f+
0 on T we define the rth modulus

of smoothness of f ∈ LM (Γ, ω) as

Ωr
Γ,M,ω (f, δ) := Ωr

M,ω0

(
f+

0 , δ
)
, δ > 0,

for r = 1, 2, 3, ....
Let

En (f,G)M,ω := inf
P∈℘n

‖f − P‖LM (Γ,ω)

be the best approximation to f ∈ EM (G, ω) in the class ℘n of algebraic polyno-
mials of degree not greater than n.
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Definition 4. For α > 0, let r :=
[
α
2

]
+ 1. The set of functions f ∈ EM (G, ω)

such that

Ωr
Γ,M,ω (f, δ) = O (δα) , δ > 0

is called the generalized Lipschitz class LipM (G, α) .

Let

SΓ (f) (z) := lim
ε→0

1

2πi

∫
Γ\{ζ∈Γ:|ζ−z|<ε}

f (ζ)

ζ − z
dζ

be a Cauchy singular integral of f ∈ LM (Γ, ω) . These Cauchy type integrals have
the non-tangential inside and outside limits f+ and f−, respectively a.e. on Γ.
In addition, the formulas

f+ (z) = SΓ (f) (z) +
1

2
f (z) ,

f− (z) = SΓ (f) (z)− 1

2
f (z)

hold, therefore, we get

f (z) = f+ (z)− f− (z) (6)

a.e. on Γ [17, p. 431].

Introduce the Faber polynomials Fk, k = 0, 1, 2, ... defined as [41]

ψ
′
(w)

ψ (w)− z
=
∞∑
k=0

Fk (z)

wk+1
, w ∈ D−, z ∈ G. (7)

Then the equalities

Fk (z) =
1

2πi

∫
T

wkψ
′
(w)

ψ (w)− z
dw, z ∈ G, (8)

Fk (z) = ϕk (z) +

∫
Γ

ϕk (ζ)

ζ − z
dζ, z ∈ G−,

hold [41, p. 33].

If f ∈ EM (G,ω) , then by definition f ∈ E1 (G) and hence

f (z) =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ
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=
1

2πi

∫
T

f (ψ (w))
ψ
′
(w)

ψ (w)− z
dw, z ∈ G.

Using (7) we have

f (z) ∼
∞∑
k=0

akFk (z) , z ∈ G, (9)

where

ak := ak (f) :=
1

2πi

∫
T

f (ψ (w))

wk+1
dw, k = 0, 1, 2, ....

The series (9) is called Faber series of f ∈ EM (G,ω) and the coefficients ak,
k = 0, 1, 2, ..., are called Faber coefficients of f ∈ EM (G,ω) . The λnth partial
sum of the Faber series of f is defined as

SG
λn (f) (z) =

λn∑
k=0

ak (f)Fk (z) , n = 1, 2, 3, ....

Let ℘ := {all polynomials (with no restriction on the degree)} , ℘ (D) :=
{traces of all members of ℘ on D} and let

T (P ) (z) :=
1

2πi

∫
T

P (w)ψ
′
(w)

ψ (w)− z
dw, z ∈ G

be an operator T defined on ℘ (D) .
Then by (8)

T

(
λn∑
k=0

bkw
k

)
=

λn∑
k=0

bkFk (z) , z ∈ G.

The Riesz submethod of the Faber series of f ∈ EM (G,ω) with respect to
the sequence (pλn) is defined as

RG
λn (f) (z) :=

1

Pλn

λn∑
k=0

pλn,kS
G
k (f) (z) ,

where Pλn =
λn∑
k=0

pk. Clearly, if pλn = 1 for all n = 1, 2, 3, ..., then RG
λn

(f) (z)

coincides with the Cesàro mean σGn (f) (z) defined as

σGn (f) (z) :=
1

n+ 1

n∑
k=0

SG
k (f) (z) .
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Let A = (aλn,k) be an infinite lower triangular regular matrix with non-negative

entries and let s
(A)
λn
, n = 0, 1, ..., denote the row sum of this matrix, that is

S
(A)
λn

=
λn∑
k=0

aλn,k. For a given A = (aλn,k), we consider the matrix transform of

Faber series of f ∈ EM (G,ω) defined as

τ
(A)
G,λn

(f) (z) :=

λn∑
k=0

aλn,kS
G
k (f) (z) .

If we consider lower triangular matrix A with entries aλn,k =
pλn,k
Pλn

, then the

matrix transform T
(A)
G,λn

(f) coincides with the Riesz submethod RG
λn

(f) .

We say that the matrix A = (an,k) has almost monotone increasing (de-
creasing) rows if there is a constant K1, (K2) , depending only on A, such that
an,k ≤ K1an,m (an,m ≤ K2an,k) , where 0 ≤ k ≤ m ≤ n.

Lemma 4. [20] Let 0 < αM , βM < 1, ω ∈ A 1
αM

(Γ)∩A 1
βM

(Γ) and f ∈ LM (Γ, ω) .

Then f+ ∈ EM (G, ω) and f− ∈ EM (G−, ω) .

Lemma 5. [20] Let Γ be a Dini-smooth curve, 0 < αM , βM < 1, ω ∈ A 1
αM

(Γ) ∩
A 1
βM

(Γ) . Then the linear operator T : ℘ (D)→ EM (G, ω) is bounded.

Lemma 6. [20] Let Γ be a Dini-smooth curve, 0 < αM , βM < 1, ω ∈ A 1
αM

(Γ) ∩
A 1
βM

(Γ) . Then the operator T : EM (D,ω0)→ EM (G, ω) is one-to-one and onto.

The main theorems in this study are expressed and proved as follows:

Theorem 3. Let Γ be a Dini-smooth curve. Let f ∈ LipM (G, γ) , γ ∈ (0, 1) ,
0 < αM , βM < 1, ω ∈ A 1

αM

(Γ)∩A 1
βM

(Γ) and let A = (aλn,k) be a lower triangular

matrix with
∣∣∣S(A)
λn
− 1
∣∣∣ = O

(
λ−γn

)
. If one of the following conditions:

(i) A has almost monotone decreasing rows and (λn + 1) aλn,0 = O (1) ,

(ii) A has almost monotone increasing rows and (λn + 1) aλn,r = O (1) , where r
is the integer part of λn

2 ,

holds, then ∥∥∥f (·)− T (A)
G,λn

(·, f)
∥∥∥
L
M

(Γ,ω)
= O

(
λ−γn

)
.



Some Approximation Theorems in Weighted Smirnov-Orlicz Spaces 89

Proof. Let Γ be a Dini-smooth curve. Let f ∈ LipM (G, γ) , γ ∈ (0, 1) ,
0 < αM , βM < 1, ω ∈ A 1

αM

(Γ)∩A 1
βM

(Γ) and let A = (aλn,k) be a lower triangular

matrix with
∣∣∣S(A)
λn
− 1
∣∣∣ = O

(
λ−γn

)
. Then, we get f+

0 ∈ EΦ (D,ω) ⊂ E1 (D) using

(4) and Lemma 4 in the case of f ∈ EM (D) . Therefore, the boundary function
of f+

0 belongs to LM (T, ω) . The analytic function on the unit disc has the Taylor
series expansion. So, the function f+

0 has the Taylor series expansion

∞∑
k=0

βk
(
f+

0

)
wk, w ∈ D.

Let the Fourier series of the boundary function of f+
0 ∈ LM (T, ω) ⊂ L1 (T) be

defined as
∞∑

k=−∞
ck
(
f+

0

)
eikt.

Then, using [16, Theorem 3.4] we have

ck
(
f+

0

)
=

{
βk
(
f+

0

)
, if k ≥ 1

0, if k < 0
.

Hence, we get

f+
0 (w) =

∞∑
k=−∞

ck
(
f+

0

)
wk. (10)

Also, using the equation (6), we can obtain the following relation showing the
equality of the Faber coefficients of f and the Taylor coefficients of f+

0 :

ak (f) =
1

2πi

∫
T

f0 (w)

wk+1
dw =

1

2πi

∫
T

f+
0 (w)

wk+1
dw − 1

2πi

∫
T

f−0 (w)

wk+1
dw

=
1

2πi

∫
T

f+
0 (w)

wk+1
dw = βk

(
f+

0

)
.

If
∑∞

k=0 ak (f)Fk (z) is the Faber series expansion of f ∈ EM (D) , then by (10)
and (7) we get

T

(
λn∑
k=0

ck
(
f+

0

)
wk

)
= SG

λn (f) (z) and T
(
T

(A)
λn

(
f+

0

))
= T

(A)
G,λn

(f) . (11)

By considering (5), we get ω0 ∈ A 1
αM

(T) ∩ A 1
βM

(T) and f ∈ LipM (G, ω, γ) ,

γ ∈ (0, 1) . Therefore, f+
0 ∈ Lip (γ,M, ω0) . Hence, f+

0 satisfies the conditions of
Theorem 1. If one of the following conditions
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(i) A has almost monotone decreasing rows and (λn + 1) aλn,0 = O (1) ,

(ii) A has almost monotone increasing rows and (λn + 1) aλn,r = O (1) , where r
is the integer part of λn

2 ,

holds, then applying Theorem 1 for f+
0 , by Lemma 5 and Lemma 6 we have∥∥∥f (·)− T (A)

G,λn
(·, f)

∥∥∥
LM (Γ,ω)

=
∥∥∥T (f+

0

)
− T

(
T

(A)
λn

(
f+

0

))∥∥∥
LM (Γ,ω)

=
∥∥∥T (f+

0 − T
(A)
λn

(
f+

0

))∥∥∥
LM (Γ,ω)

�
∥∥∥f+

0 − T
(A)
λn

(
f+

0

)∥∥∥
LM (T,ω)

= O
(
λ−γn

)
.

J

Corollary 2. Let Γ be a Dini-smooth curve. Let f ∈ LipM (G, γ) , γ ∈ (0, 1) ,
0 < αM , βM < 1, ω ∈ A 1

αM

(Γ) ∩A 1
βM

(Γ) and let (pλn) be a sequence of positive

numbers. If one of the following conditions:

(i) (pλn) is almost monotone increasing and (λn + 1) pλn = O (Pλn) ,

(ii) (pλn) is almost monotone decreasing,

holds, then ∥∥f (·)−RG
λn (·, f)

∥∥
L
M

(Γ,ω)
= O

(
λ−γn

)
.

Theorem 4. Let Γ be a Dini-smooth curve. Let f ∈ LipM (G, 1) , 0 < αM , βM <
1, ω ∈ A 1

αM

(Γ) ∩A 1
βM

(Γ) and let A = (aλn,k) be a lower triangular matrix with∣∣∣S(A)
λn
− 1
∣∣∣ = O

(
λ−1
n

)
. If

λn−1∑
k=1

(λn − k) |∆kaλn,k−1| = O (1) ,

then ∥∥∥f (·)− T (A)
G,λn

(·, f)
∥∥∥
L
M

(Γ,ω)
= O

(
λ−1
n

)
.

Proof. Let Γ be a Dini-smooth curve. Let f ∈ LipM (G, 1) , 0 < αM , βM < 1,
ω ∈ A 1

αM

(Γ) ∩ A 1
βM

(Γ) and let A = (aλn,k) be a lower triangular matrix with∣∣∣S(A)
λn
− 1
∣∣∣ = O

(
λ−1
n

)
. By considering (5), we get ω0 ∈ A 1

αM

(T) ∩ A 1
βM

(T) and
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f ∈ LipM (G,1) . Then f+
0 ∈ Lip (1,M, ω0) . Hence f+

0 satisfies the conditions of
Theorem 2. If

λn−1∑
k=1

(λn − k) |aλn,k−1 − aλn,k| = O (1) ,

then applying Theorem 2 for f+
0 , by (11), Lemma 5 and Lemma 6 we have∥∥∥f (·)− T (A)

G,λn
(·, f)

∥∥∥
LM (Γ,ω)

=
∥∥∥T (f+

0

)
− T

(
T

(A)
λn

(
f+

0

))∥∥∥
LM (Γ,ω)

=
∥∥∥T (f+

0 − T
(A)
λn

(
f+

0

))∥∥∥
LM (Γ,ω)

�
∥∥∥f+

0 − T
(A)
λn

(
f+

0

)∥∥∥
LM (T,ω)

= O
(
λ−1
n

)
.

J

Remark 3. Since

λn−1∑
k=1

(λn − k) |∆kaλn,k−1| ≤ λn
λn−1∑
k=1

|∆kaλn,k−1| ,

from Theorem 4 we immediately get the following result.

Corollary 3. Let Γ be a Dini-smooth curve. Let f ∈ LipM (G, 1) , 0 < αM , βM <
1, ω ∈ A 1

αM

(Γ) ∩A 1
βM

(Γ) and let A = (aλn,k) be a lower triangular matrix with∣∣∣S(A)
λn
− 1
∣∣∣ = O

(
λ−1
n

)
. If

λn−1∑
k=1

|∆kaλn,k−1| = O
(
λ−1
n

)
,

then ∥∥∥f (·)− T (A)
G,λn

(·, f)
∥∥∥
L
M

(Γ,ω)
= O

(
λ−1
n

)
.

Corollary 4. Let Γ be a Dini-smooth curve. Let f ∈ LipM (G, 1) , 0 < αM , βM <
1, ω ∈ A 1

αM

(Γ) ∩A 1
βM

(Γ) and let (pλn) be a sequence of positive numbers. If

λn−1∑
k=1

|∆kpk| = O

(
Pλn
λn

)
,

then ∥∥f (·)−RG
λn (·, f)

∥∥
LM (Γ,ω)

= O
(
λ−1
n

)
.
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