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The Darboux Problem with Nonlocal Boundary
Conditions for a Hyperbolic System of First
Order Equations

V.M. Kyrylych∗, O.V. Milchenko

Abstract. This paper considers the existence and uniqueness of the problem with gen-
eralized nonlocal (non-separated and integral) boundary conditions in curvilinear sector
for linear and semilinear hyperbolic systems of the first order (Darboux type problem).
Under some conditions on the coefficients of boundary conditions (solvability and com-
pressibility conditions) the existence and uniqueness of generalized solution of the prob-
lem is proved. The conditions under which the generalized solution is piecewise smooth
are specified. The question of the possibility of continuation of the solution for all t > 0
is considered.
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local conditions
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1. Introduction

Solving modern applied problems requires qualitatively new formulations of
problems, a particularity of which is, for example, that boundary conditions are
given at interior points of the domain where the required function must satisfy
the equation or nonlocal (non-separable or integral) boundary conditions.

This paper considers problems with nonlocal conditions for one-dimensional
first-order hyperbolic systems in the curvilinear sector.

Note that problems with nonlocal (non-separated and integral) conditions for
ordinary differential equations have been investigated before. For example, in [1]
the following problem has been considered: find a solution of the equation

y′ = k(x, λ)y + g(x),
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that satisfies the condition∑
i
M i(λ)y(ai, λ) +

b∫
a
M(x, λ)y(x, λ)dx = 0,

where ai are the points of interval [a, b].
Recently there appeared a work [2] with similar nonlocal conditions for non-

linear impulse ordinary differential equations.
Non-standard form of boundary conditions generates a number of peculiar

phenomena: in some cases we obtain an infinite number of adjoint functions, there
also arise nontrivial questions about convergence of eigenfunction expansions,
about existence of global solution and continuous dependence on initial data.

Detailed review of works related to the problems with nonlocal (non-separated
and integral) boundary conditions for hyperbolic systems and equations on the
plane is available in [3].

In this paper we consider nonlocal boundary value problems for hyperbolic
systems of first order. We will consider the initial conditions degenerate in the
sense that the segment on which the initial conditions are given is degenerate
into a point, i.e. the boundary condition setting lines exit from one point and
do not intersect anywhere else. Problems in such domains are called Darboux
type problems [4]. In this case some characteristics of the system exiting from
the intersection point of the boundary curves can enter the domain of solution
and the boundary conditions are given in nonlocal form.

The study of mixed problems for hyperbolic systems with discontinuous coef-
ficients in the case where the discontinuity lines of the initial data have common
points leads to the consideration of such domains, for example, in aerodynamics
and gas dynamics [5].

The problems with nonlocal (integral) conditions for hyperbolic systems and
equations appear in biology, ecology, mechanics, demography, etc. [3].

For example, in biological and demographic studies [6, 7], ”continuous” mod-
els of population dynamics of the form

∂ρ

∂t
+
∂ρ

∂r
= µ(r, t)ρ(r, t) + ω(r, t), r > 0, t > 0,

ρ(r, 0) = ρ0(r), ρ(0, t) = β(t)
r2∫
r1

h(r, t)K(r, t)ρ(r, t)dr

are used. Here ρ(r, t) is the density of population grouping by growth r at the
time t; ω(r, t) is the migrant density; µ(r, t) is the mortality rate; p0(r), β(t),
h(r, t), K(r, t) are the standard demographic indices.

Many other applied problems that lead to nonlocal boundary conditions for
hyperbolic type equations and systems have been treated in [3, 8, 9]. Some
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variants of such problems have been considered for nonlinear hyperbolic systems
with unknown boundaries [10] and optimal control [11].

Correct solvability of the problems stated in this paper was proved by the
method of characteristics, using the methodology of [12, 13].

2. Statement of the Problem

Let G be a curvilinear sector in upper half-plane t > 0 of plane xOt, bounded
by curves γ0 and γm+1, which are given by equations x = a0(t), x = am+1(t),
m > 0, a0(0) = am+1(0) = 0, am+1(t) > a0(t), respectively, for all t > 0. The
curves γs : x = as(t), s = 0,m+ 1, as ∈ C1(R+) (R+ = [0,∞)), as+1(t) > as(t)
for all t > 0, as(0) = 0 divide G into m+1 connectivity components Gs (s = 0,m),
which are numbered from left to right.

In the domain G\∪γs (Fig.1) we consider a system (with the assumption that
some characteristics of the system that pass through (0, 0) may fall into G \∪γs)
for which conditions are formulated that change the boundary conditions defined
at γ0 and γm+1 and the conjugation conditions at γ1, . . . , γm, if m > 0:

Figure 1:

∂ui
∂t

+ λi(x, t)
∂ui
∂x

=

n∑
j=1

aij(x, t)uj + fi(x, t), i = 1, n, (1)

where λi, aij , fi are the given functions that are uniformly continuous in each
domain Gs.

All functions F defined on G or on Gε(ε > 0) will be assumed to be uni-
formly continuous in each domain Gs (respectively Gsε) and by F s we mean the
continuous extension of F from Gs to Ḡs (respectively, from Gsε to Ḡsε). Let us
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denote

Φs
i (x, t, u

s) =
n∑
j=1

asij(x, t)u
s
j(x, t) + fsi (x, t), i = 1, n, s = 0,m

for convenience.

Assume that for all t > 0 and for each s = 0,m the conditions

λsi (as(t), t)− a′s(t) > 0, i = 1, ps, λsi (as(t), t)− a′s(t) < 0, i = ps + 1, n,
λsi (as+1(t), t)− a′s+1(t) > 0, i = 1, qs,

λsi (as+1(t), t)− a′s+1(t) < 0, i = qs + 1, n,
0 6 ps, qs 6 n, s = 0,m

(2)

are valid. Since ps(qs) is the set of indices i for which λsi (0, 0) > a′s(0) (respec-
tively, a′s+1(0)), and a′s(0) 6 a′s+1(0), we have ps > qs for all s = 0,m. Let

N =
m∑
s=0

(ps − qs) + (m+ 1)n.

Conditions (2) regulate the relations between angular coefficients of λsi char-
acteristics of system (1) and angular coefficients of a′k (k = s, s+ 1) boundaries of
domains Gs (s = 0,m). The number of boundary conditions for the correspond-
ing problem for system (1) depends on conditions (2). Particularly, it follows from
(2) that ps− qs characteristics of system (1) exit from the origin and fall into the
middle of the domain Gs. Therefore, for a correct formulation of the boundary
value problem for system (1) the number of boundary conditions increases by the
number ps − qs with respect to the number of equations of system (1).

For system (1), impose the conditions that replace the boundary conditions
on γ0 and γm+1 and the conjugate conditions on γ1, . . . , γm, if m > 0:

n∑
i=1

m∑
s=0

( s+1∑
k=s

αkpis (t)usi (ak(t), t) +
as+1(t)∫
as(t)

βpis(y, t)u
s
i (y, t)dy

)
= hp(t), p = 1, q, (3)

n∑
i=1

m∑
s=0

as+1(t)∫
as(t)

βpis(y, t)u
s
i (y, t)dy = hp(t), p = q + 1, N, q = 0, N. (4)

Here αkpis (t), hp(t), βpis(y, t) are the given continuous functions on [0,∞) and Ḡs,
respectively.

By substituting t = 0 into (4), we immediately obtain the necessary condition
for the solvability of the problem: hp(0) = 0, p = q + 1, N . Let us assume that
this condition is always satisfied.
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Additionally assume that hp ∈ C1(R+), βpis ∈ C1(Ḡs), s = 0,m, p = q + 1, N ,
i = 1, n.

Let us denote by ϕsi (τ, x, t) the solution of the Cauchy problem

dξ

dτ
= λsi (ξ, τ), ξ(t) = x, (x, t) ∈ Ḡs, i = 1, n, s = 0,m. (5)

Denote the corresponding integral curves by Qsi (x, t). Let us assume that all
λsi ∈ C2(Ḡs), which ensures that each solution is uniquely extended. Let tsi (x, t)
be the smallest value of τ for such solution. Obviously, 0 6 tsi (x, t) 6 t. If
tsi (x, t) > 0, then ϕsi (t

s
i (x, t), x, t) equals either as(t

s
i (x, t)) or as+1(tsi (x, t)).

Accordingly, the characteristicQsi (0, 0) is defined if a′s(0) < λsi (0, 0) < a′s+1(0),
that is, qs < i 6 ps; in this case, it divides Gs into two components Gsi− and
Gsi+ (Fig.2).

Figure 2:

Similarly, for λsi (0, 0) < a′s(0) (λsi (0, 0) > a′s+1(0)) we will assume Gsi− =
∅, Gsi+ = Gs (respectively, Gsi− = Gs, Gsi+ = ∅). Then for t > 0, the
condition ϕsi (t

s
i (x, t), x, t) = as(t

s
i (x, t)) (as+1(tsi (x, t))) is equivalent to (x, t) ∈

Ḡsi− (respectively, Ḡsi+).

Let us introduce the following matrices:

α1
s(t) =

∥∥∥αspis (t)
∥∥∥, p = 1, q, i = 1, ps; α

2
s(t) =

∥∥∥αs+1,p
is (t)

∥∥∥, p = 1, q, i = qs + 1, n;

α3
s(0) = −

∥∥∥αs+1,p
is (0)

∥∥∥, p = 1, q, i = 1, qs;

α4
s(0) = −

∥∥∥αspis (0)
∥∥∥, p = 1, q, i = ps + 1, n;

β1
s (t) =

∥∥∥βpis(as(t), t)(λsi (as(t), t)− a′s(t))∥∥∥, p = q + 1, N, i = 1, ps;

β2
s (t) = −

∥∥∥βpis(as+1(t), t)
(
λsi (as+1(t), t)− a′s+1(t)

)∥∥∥, p = q + 1, N, i = qs + 1, n;
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β3
s (0) =

∥∥∥βpis(0, 0)
(
λsi (0, 0)− a′s+1(0)

)∥∥∥, p = q + 1, N, i = 1, qs;

β4
s (0) = −

∥∥∥βpis(0, 0)
(
λsi (0, 0)− a′s(0)

)∥∥∥, p = q + 1, N, i = ps + 1, n;

s = 0,m, t > 0

and in addition, let us introduce square matrices of order N

A(t) =

∥∥∥∥ α1
0(t) . . . α1

m(t) α2
0(t) . . . α2

m(t)
β1

0(t) . . . β1
m(t) β2

0(t) . . . β2
m(t)

∥∥∥∥ ,
B(0) =

∥∥∥∥ α3
0(0)01

0 . . . α3
m(0)01

m 01
0α

4
0(0) . . . 01

mα
4
m(0)

β3
0(0)02

0 . . . β3
m(0)02

m 02
0β

4
0(0) . . . 02

mβ
4
m(0)

∥∥∥∥ .
Here 0ks are null matrices of dimension q × (ps − qs) if k = 1 and of dimension
(N − q)(ps − qs) if k = 2 (s = 0,m).

Let us assume that
detA(t) 6= 0, ∀ t > 0, (6)

|A(0)−1B(0)| < 1 (7)

and conditions of agreement

N∑
p=1

(δlsi ,p − δksi ,p)H
p(0) = 0, i = qs + 1, ps, s = 0,m (8)

are satisfied at point (0, 0)
m∑
s=0

(ps − qs), where δjp are elements of the matrix

[I −A(0)−1B(0)]−1,

lsi = i, ksi = ns+
m∑
r=0

pr −
s∑
r=0

qr + i,

Hp(0) = hp(0) (p = 1, q), Hp(0) = hp′(0) (p = q + 1, N).

3. Auxiliary Lemmas

Lemma 1. The functions ϕsi (i = 1, n, s = 0,m) for 0 6 t < ∞, as(t) 6 x 6
as+1(t), 0 6 τ 6 t are continuously differentiable, and the formulas

∂ϕs
i

∂x (τ, x, t) = exp

(
−

t∫
τ
λsix
′(ϕsi (σ, x, t), σ)dσ

)
, (9)
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∂ϕs
i

∂t (τ, x, t) = −λsi (x, t) exp

(
−

t∫
τ
λsix
′(ϕsi (σ, x, t), σ)dσ

)
(10)

are valid.

Proof. The continuous differentiability of the function ϕsi is well known from
the theorems of the theory of ordinary differential equations, and formulas (9),
(10) are obtained by integrating the variation equation for (5) (see, for example,
[14, p. 92]). J

Lemma 2. The functions tsi (i = 1, n, s = 0,m) are continuously differentiable
for (x, t) ∈ Ḡsi− ∪ Ḡsi+ and

∂tsi
∂x

(x, t) =
−1

λsi (as(t
s
i (x, t)), t

s
i (x, t))− a′s(tsi (x, t))

×

× exp

(
−

t∫
tsi (x,t)

λsix
′(ϕsi (σ, x, t), σ)dσ

)(
(x, t) ∈ Ḡsi−

)
,

(11)

∂tsi
∂x

(x, t) =
−1

λsi (as+1(tsi (x, t)), t
s
i (x, t))− a′s+1(tsi (x, t))

×

× exp

(
−

t∫
tsi (x,t)

λsix
′(ϕsi (σ, x, t), σ)dσ

)(
(x, t) ∈ Ḡsi+

)
,

(12)

∂tsi
∂t

(x, t) =
λsi (x, t)

λsi (as(t
s
i (x, t)), t

s
i (x, t))− a′s(tsi (x, t))

×

× exp

(
−

t∫
tsi (x,t)

λsix
′(ϕsi (σ, x, t), σ)dσ

)(
(x, t) ∈ Ḡsi−

)
,

(13)

∂tsi
∂t

(x, t) =
λsi (x, t)

λsi (as+1(tsi (x, t)), t
s
i (x, t))− a′s+1(tsi (x, t))

×

× exp

(
−

t∫
tsi (x,t)

λsix
′(ϕsi (σ, x, t), σ)dσ

)(
(x, t) ∈ Ḡsi+

)
.

(14)
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Proof. Since tsi (x, t) is the ordinate of the i-th characteristic’s intersection
point, which exits from the point (x, t) ∈ Ḡs, with the curve γs or γs+1, we have
the identities

ϕsi (t
s
i (x, t), x, t) ≡ as(tsi (x, t)), (x, t) ∈ Ḡsi−,

ϕsi (t
s
i (x, t), x, t) ≡ as+1(tsi (x, t)), (x, t) ∈ Ḡsi+.

(15)

Let us rewrite the first identity as ϕsi (v, x, t)− as(v) = 0, where v = tsi (x, t), and
note that according to (2)

∂[ϕsi (v, x, t)− as(v)]

∂v
= λsi (ϕ

s
i (v, x, t), v)− a′s(v) = λsi (as(v), v)− a′s(v) 6= 0,

by the implicit function theorem, the function tsi is continuously differentiable in
Gsi−. Therefore we can differentiate the first identity of (15) with respect to x
to obtain

∂ϕsi
∂τ

(τ, x, t)
∣∣∣
τ=tsi (x,t)

∂tsi
∂x

(x, t) +
∂ϕsi
∂x

(τ, x, t)
∣∣∣
τ=tsi (x,t)

= a′s(t
s
i (x, t))

∂tsi
∂x

(x, t).

Given (5) and formula (9) of Lemma 1, we have

[
λsi (as(t

s
i (x, t)))− a′s(tsi (x, t))

]∂tsi
∂x

(x, t) = − exp

( t∫
tsi (x,t)

λs
′
ix(ϕsi (σ, x, t), σ)dσ

)
.

Thus we obtain (11).
Similarly, by differentiating identities (15) with respect to x and t and apply-

ing formula (10), we obtain formulas (12), (13) and (14).
Lemma 2 is proved. J

4. Local Theorem on Existence and Uniqueness of a Continuous
Generalized Solution

Introduce additional auxiliary unknown functions for s = 0,m:

µsi (t) = usi (as(t), t), i = 1, ps; νsi (t) = usi (as+1(t), t), i = qs + 1, n. (16)

We will call a function piecewise continuous on G if it is uniformly continuous
on some Gs and piecewise smooth on G if its first-order derivatives are piecewise
continuous.

The following lemma is true.
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Lemma 3. For piecewise smooth functions u on G (or on Gε for ε > 0) , the
system (1) is equivalent to a system of integro-functional equations

usi (x, t) = ωsi (x, t) +
t∫

tsi (x,t)

Φs
i (ϕ

s
i (τ, x, t), τ, u

s)dτ, (x, t) ∈ Ḡs, i = 1, n, (17)

ωsi (x, t) =


µsi (t

s
i (x, t)), if ϕsi (t

s
i (x, t), x, t) = as(t

s
i (x, t)),

i.e. (x, t) ∈ Ḡsi− (if t > 0) or x = t = 0,

νsi (t
s
i (x, t)), if ϕsi (t

s
i (x, t), x, t) = as+1(tsi (x, t)),

i.e. (x, t) ∈ Ḡsi+ (if t > 0) or x = t = 0,

for any predefined functions µsi and νsi , s = 0,m.

Proof. We obtain the transition from (1) to (17) by substituting ξ = ϕsi (τ, x, t),
τ instead of x, t in (1) and further integrating over τ from tsi (x, t) to t, i.e., inte-
grating along the characteristics of the i-th family. The inverse transition occurs
by the same substitution in (17) and further differentiation by τ at τ = t, i.e.,
differentiation along the characteristics of the i-th family. Note that relation (16)
follows from (17). J

Definition 1. The piecewise continuous generalized solution of problem (1) –
(4) is defined as a piecewise continuous solution of system (17) that satisfies
conditions (3), (4) for each t.

Theorem 1. Suppose all assumptions formulated in Section 2 are satisfied. Then
for some ε > 0 the problem (1) – (4) has a unique generalized piecewise continuous
solution in Ḡε. This solution is continuous (in the sense of a uniform metric)
and depends on the given functions hp(p = 1, q), hp′(p = q + 1, N) and all f si .
Moreover, there exists a constant C, which does not depend on the functions hp

and fsi , such that

|ui(x, t)| 6 C
[ q∑
i=1

max
06t6ε

|hp(t)|+
N∑

i=q+1
max
06t6ε

|hp′|+

+
m∑
r=0

n∑
i=1

max
(x,t)∈Ḡr

ε

|f ri (x, t)|
]
, (x, t) ∈ Ḡsε, s = 0,m, i = 1, n.

Proof. Let us rewrite conditions (3) and (4) as follows:

m∑
s=0

[ ps∑
i=1

αspis (t)usi (as(t), t) +
n∑

i=ps+1
αspis (t)usi (as(t), t)+
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+
qs∑
i=1

αs+1,p
is (t)usi (as+1(t), t) +

n∑
i=qs+1

αs+1,p
is (t)usi (as+1(t), t)+

+
qs∑
i=1

as+1(t)∫
as(t)

βpis(y, t)u
s
i (y, t)dy +

ps∑
i=qs+1

ϕs
i (t,0,0)∫
as(t)

βpis(y, t)u
s
i (y, t)dy+

+
ps∑

i=qs+1

as+1(t)∫
ϕs
i (t,0,0)

βpis(y, t)u
s
i (y, t)dy+

+
n∑

i=ps+1

as+1(t)∫
as(t)

βpis(y, t)u
s
i (y, t)dy

]
= hp(t), p = 1, q;

m∑
s=0

[ qs∑
i=1

as+1(t)∫
as(t)

βpis(y, t)u
s
i (y, t)dy +

ps∑
i=qs+1

ϕs
i (t,0,0)∫
as(t)

βpis(y, t)u
s
i (y, t)dy+

+
ps∑

i=qs+1

as+1(t)∫
ϕs
i (t,0,0)

βpis(y, t)u
s
i (y, t)dy+

+
n∑

i=ps+1

as+1(t)∫
as(t)

βpis(y, t)u
s
i (y, t)dy

]
= hp(t), p = q + 1, N.

(If qs = ps, then the sum from qs + 1 to ps is zero).
Substituting (17) here, we obtain

m∑
s=0

[ ps∑
i=1

αspis (t)µsi (t
s
i (as(t), t)) +

ps∑
i=1

αspis (t)
t∫

tsi (as(t),t)

Φs
i (ϕ

s
i (τ, as(t), t), τ, u

s)dτ+

+
n∑

i=ps+1
αspis (t)νsi (t

s
i (as(t), t)) +

n∑
i=ps+1

αspis (t)
t∫

tsi (as(t),t)

Φs
i (ϕ

s
i (τ, as(t), t), τ, u

s)dτ+

+
qs∑
i=1

αs+1,p
is (t)µsi (t

s
i (as+1(t), t))+

+
qs∑
i=1

αs+1,p
is (t)

t∫
tsi (as+1(t),t)

Φs
i (ϕ

s
i (τ, as+1(t), t), τ, us)dτ+

+
n∑

i=qs+1
αs+1,p
is (t)νsi (t

s
i (as+1(t), t))+

+
n∑

i=qs+1
αs+1,p
is (t)

t∫
tsi (as+1(t),t)

Φs
i (ϕ

s
i (τ, as+1(t), t), τ, us)dτ+

+
qs∑
i=1

as+1(t)∫
as(t)

βpis(y, t)µ
s
i (t

s
i (y, t))dy +

ps∑
i=qs+1

ϕs
i (t,0,0)∫
as(t)

βpis(y, t)µ
s
i (t

s
i (y, t))dy+
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+
ps∑

i=qs+1

as+1(t)∫
ϕs
i (t,0,0)

βpis(y, t)ν
s
i (t

s
i (y, t))dy +

n∑
i=ps+1

as+1(t)∫
as(t)

βpis(y, t)ν
s
i (t

s
i (y, t))dy+

+
n∑
i=1

as+1(t)∫
as(t)

βpis(y, t)

(
t∫

tsi (y,t)

Φs
i (ϕ

s
i (τ, y, t), τ, u

s)dτ

)
dy
]

= hp(t), p = 1, q; (18)

m∑
s=0

[ qs∑
i=1

as+1(t)∫
as(t)

βpis(y, t)µ
s
i (t

s
i (y, t))dy +

ps∑
i=qs+1

ϕs
i (t,0,0)∫
as(t)

βpis(y, t)µ
s
i (t

s
i (y, t))dy+

+
ps∑

i=qs+1

as+1(t)∫
ϕs
i (t,0,0)

βpis(y, t)ν
s
i (t

s
i (y, t))dy +

n∑
i=ps+1

as+1(t)∫
as(t)

βpis(y, t)ν
s
i (t

s
i (y, t))dy+

+
n∑
i=1

as+1(t)∫
as(t)

βpis(y, t)

(
t∫

tsi (y,t)

Φs
i (ϕ

s
i (τ, y, t), τ, u

s)dτ

)
dy
]

= hp(t), p = q + 1, N.

(19)

Given that tsi (as(t), t) ≡ t for i = 1, ps, and tsi (as+1(t), t) ≡ t for i = qs + 1, n,
s = 0,m, we rewrite equality (18) as

m∑
s=0

[ ps∑
i=1

αspis (t)µsi (t) +
n∑

i=qs+1
αs+1,p
is (t)νsi (t)

]
=

=
m∑
s=0

[
−

qs∑
i=1

αs+1,p
is (t)µsi (t

s
i (as+1(t), t))−

n∑
i=ps+1

αspis (t)νsi (t
s
i (as(t), t))−

−
qs∑
i=1

as+1(t)∫
as(t)

βpis(y, t)µ
s
i (t

s
i (y, t))dy −

ps∑
i=qs+1

ϕs
i (t,0,0)∫
as(t)

βpis(y, t)µ
s
i (t

s
i (y, t))dy−

−
ps∑

i=qs+1

as+1(t)∫
ϕs
i (t,0,0)

βpis(y, t)ν
s
i (t

s
i (y, t))dy −

n∑
i=ps+1

as+1(t)∫
as(t)

βpis(y, t)ν
s
i (t

s
i (y, t))dy−

−
n∑
i=1

as+1(t)∫
as(t)

βpis(y, t)

(
t∫

tsi (y,t)

Φs
i (ϕ

s
i (τ, y, t), τ, u

s)dτ

)
dy−

−
qs∑
i=1

αs+1,p
is (t)

t∫
tsi (as+1(t),t)

Φs
i (ϕ

s
i (τ, as+1(t), t), τ, us)dτ−

−
n∑

i=ps+1
αspis (t)

t∫
tsi (as(t),t)

Φs
i (ϕ

s
i (τ, as(t), t), τ, u

s)dτ
]

+ hp(t), p = 1, q. (20)

Thus, the problem is reduced to finding a system of continuous functions
{usi (x, t)}, {µsi (t)} and {νsi (t)} for which all relations (17), (19) and (20) are
fulfilled.
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Next, we will need the derivatives

∂ϕsi (τ, x, t)

∂x
,
∂ϕsi (τ, x, t)

∂t
,
∂tsi (x, t)

∂x
,
∂tsi (x, t)

∂t
,

the image of which was found in Section 3.

From formula (11) we obtain
∂tsi
∂x 6= 0 in Ḡsi−, and therefore, according to the

implicit function theorem, in Ḡsi− the equation τ = tsi (x, t) can be solved with
respect to x. Let us denote the obtained function by x = ρs−i (τ, t); according to
the same theorem, it is continuously differentiable. This function is defined for
0 6 τ <∞, τ 6 t < τ s−i (τ) 6∞, with (ρs−i (τ, t), t) ∈ Ḡsi− and if τ s−i (τ) <∞, we
can assume that t = ts−i (τ); then ϕsi (τ

s−
i (τ), ai(τ), τ) = ai+1(τ s−i (τ)). Similarly,

in Ḡsi+ we can solve the equation τ = tsi (x, t) with respect to x, which will
give a continuously differentiable function x = ρs+i (τ, t), defined for 0 6 τ <
∞, τ 6 t < τ s+i (τ) 6 ∞, with (ρs+i (τ, t), t) ∈ Ḡsi+ and if τ s+i (τ) < ∞, then
ϕsi (τ

s+
i (τ), ai+1(τ), τ) = ai(τ

s+
i (τ)). For 1 6 i 6 qs the function ρs+i is undefined,

for ps + 1 6 i 6 n the function ρs−i is undefined, for qs + 1 6 i 6 ps (if qs < ps)
both functions and τ s−i (τ) ≡ τ s+i (τ) ≡ ∞ are defined.

Using the introduced functions ρs+i , given that tsi (ϕ
s
i (t, 0, 0), t) ≡ 0, i =

qs + 1, ps and making simple transformations of integrals (19) and (20), we obtain
the equalities

m∑
s=0

[ ps∑
i=1

αspis (t)µsi (t) +
n∑

i=qs+1
αs+1,p
is (t)νsi (t)

]
=

=
m∑
s=0

[
−

qs∑
i=1

αs+1,p
is (t)µsi (t

s
i (as+1(t), t))−

n∑
i=ps+1

αspis (t)νsi (t
s
i (as(t), t))+

+
qs∑
i=1

t∫
tsi (as+1(t),t)

βpis(ρ
s−
i (τ, t), t)

∂ρs−i (τ,t)
dτ µsi (τ)dτ+

+
ps∑

i=qs+1

t∫
0

βpis(ρ
s−
i (τ, t), t)

∂ρs−i (τ,t)
∂τ µsi (τ)dτ−

−
ps∑

i=qs+1

t∫
0

βpis(ρ
s+
i (τ, t), t)

∂ρs+i (τ,t)
∂τ νsi (τ)dτ−

−
n∑

i=ps+1

t∫
tsi (as(t),t)

βpis(ρ
s+
i (τ, t), t)

∂ρs+i (τ,t)
∂τ νsi (τ)dτ−

−
qs∑
i=1

αs+1,p
is (t)

t∫
tsi (as+1(t),t)

Φs
i (ϕ

s
i (τ, as+1(t), t), τ, us)dτ−

−
n∑

i=ps+1
αspis (t)

t∫
tsi (as(t),t)

Φs
i (ϕ

s
i (τ, as(t), t), τ, u

s)dτ−
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−
qs∑
i=1

t∫
tsi (as+1(t),t)

dτ
as+1(τ)∫

ϕs
i (t,as(τ),τ)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy−

−
ps∑

i=qs+1

t∫
0

dτ
ϕs
i (t,0,0)∫

ϕs
i (t,as(τ),τ)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy−

−
ps∑

i=qs+1

t∫
0

dτ
ϕs
i (t,as+1(τ),τ)∫
ϕs
i (t,0,0)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy−

−
n∑

i=ps+1

t∫
tsi (as(t),t)

dτ
ϕs
i (t,as+1(τ),τ)∫

as(τ)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy
]
+

+ hp(t), p = 1, q; (21)

m∑
s=0

[
−

qs∑
i=1

t∫
tsi (as+1(t),t)

βpis(ρ
s−
i (τ, t), t)

∂ρs−i (τ,t)
∂τ µsi (τ)dτ−

−
ps∑

i=qs+1

t∫
0

βpis(ρ
s−
i (τ, t), t)

∂ρs−i (τ,t)
∂τ µsi (τ)dτ+

+
ps∑

i=qs+1

t∫
0

βpis(ρ
s+
i (τ, t), t)

∂ρs+i (τ,t)
∂τ νsi (τ)dτ+

+
n∑

i=ps+1

t∫
tsi (as(t),t)

βpis(ρ
s+
i (τ, t), t)

∂ρs+i (τ,t)
∂τ νsi (τ)dτ+

+
qs∑
i=1

t∫
tsi (as+1(t),t)

dτ
as+1(τ)∫

ϕs
i (t,as(τ),τ)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy+

+
ps∑

i=qs+1

t∫
0

dτ
ϕs
i (t,0,0)∫

ϕs
i (t,as(τ),τ)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy+

+
ps∑

i=qs+1

t∫
0

dτ
ϕs
i (t,as+1(τ),τ)∫
ϕs
i (t,0,0)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy+

+
n∑

i=ps+1

t∫
tsi (as(t),t)

dτ
ϕs
i (t,as+1(τ),τ)∫

as(τ)

βpis(ϕ
s
i (t, y, τ), t)

∂ϕs
i

∂y Φs
i (y, τ, u

s)dy
]

=

= hp(t), p = q + 1, N. (22)

Let us calculate the derivatives that appear in formulas (21), (22)

∂ρs−i (τ, t)

∂τ
,
∂ρs+i (τ, t)

∂τ
.
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From formula (9) we obtain

∂ϕsi (t, y, τ)

∂y
= exp

(
−

t∫
τ

λsix
′(ϕsi (σ, y, τ), σ)dσ

)
, i = 1, n, s = 0,m. (23)

To find
∂ρs+i (τ,t)

∂τ , write down the first identity of (15) at x = ρs−i (τ, t):

ϕsi (τ, ρ
s−
i (τ, t), t) ≡ as(τ).

Differentiating the resulting equality by τ , we have

∂ϕsi (τ, ρ
s−
i (τ, t), t)

∂τ
+
∂ϕsi (τ, ρ

s−
i (τ, t), t)

∂x

∂ρs−i (τ, t)

∂τ
= a′s(τ).

Given (2), we get

∂ρs−i (τ, t)

∂τ
= −(λsi (as(τ), τ)−a′s(τ)) exp

( t∫
τ

λsix
′(ϕsi (σ, ρ

s−
i (τ, t), t), σ)dσ

)
. (24)

Substituting x = ρs+i (τ, t) into the second identity of (15) and differentiating
by τ , we similarly find

∂ρs+i (τ, t)

∂τ
= −(λsi (as+1(τ), τ)− a′s+1(τ)) exp

( t∫
τ

λsix
′(ϕsi (σ, ρ

s+
i (τ, t), t), σ)dσ

)
.

(25)
Let

Rp−is (τ, t) ≡βpis(ρ
s−
i (τ, t), t)(λsi (as(τ), τ)− a′s(τ))×

× exp

(
t∫
τ
λsix
′(ϕsi (σ, ρ

s−
i (τ, t), t), σ)dσ

)
,

(26)

s = 0,m, i = 1, ps, 0 6 τ <∞, τ 6 t < τ s−i (τ);

Rp+is (τ, t) ≡βpis(ρ
s+
i (τ, t), t)(λsi (as+1(τ), τ)− a′s+1(τ))×

× exp

(
t∫
τ
λsix
′(ϕsi (σ, ρ

s+
i (τ, t), t), σ)dσ

)
,

(27)

s = 0,m, i = qs + 1, n, 0 6 τ <∞, τ 6 t < τ s+i (τ);
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Qpis(y, τ, t) ≡ β
p
is(ϕ

s
i (t, y, τ), t) exp

(
t∫
τ
λsix
′(ϕsi (σ, y, t), σ)dσ

)
, (28)

i = 1, n, s = 0,m.

Let us rewrite equations (21), (22), taking into account (23)–(25) and the
introduced notations (26)–(28), in the following form (double integrals for i =
qs + 1, ps are combined):

m∑
s=0

[ ps∑
i=1

αspis (t)µsi (t) +
n∑

i=qs+1
αs+1,p
is (t)νsi (t)

]
=

=
m∑
s=0

[
−

n∑
i=ps+1

αspis (t)νsi (t
s
i (as(t), t))−

qs∑
i=1

αs+1,p
is (t)µsi (t

s
i (as+1(t), t))−

−
qs∑
i=1

t∫
tsi (as+1(t),t)

Rp−is (τ, t)µsi (τ)dτ −
ps∑

i=qs+1

t∫
0

Rp−is (τ, t)µsi (τ)dτ+

+
ps∑

i=qs+1

t∫
0

Rp+is (τ, t)νsi (τ)dτ +
n∑

i=ps+1

t∫
tsi (as(t),t)

Rp+is (τ, t)νsi (τ)dτ−

−
qs∑
i=1

αs+1,p
is (t)

t∫
tsi (as+1(t),t)

Φs
i (ϕ

s
i (τ, as+1(t), t), τ, us)dτ−

−
qs∑
i=1

t∫
tsi (as+1(t),t)

dτ
as+1(τ)∫

ϕs
i (t,as(τ),τ)

Qpis(y, τ, t)Φ
s
i (y, τ, u

s)dy−

−
ps∑

i=qs+1

t∫
0

dτ
ϕs
i (t,as+1(τ),τ)∫
ϕs
i (t,as(τ),τ)

Qpis(y, τ, t)Φ
s
i (y, τ, u

s)dy−

−
n∑

i=ps+1

t∫
tsi (as(t),t)

dτ
ϕs
i (t,as+1(τ),τ)∫

as(τ)

Qpis(y, τ, t)Φ
s
i (y, τ, u

s)dy
]

+ hp(t), p = 1, q;

(29)

m∑
s=0

[ qs∑
i=1

t∫
tsi (as+1(t),t)

Rp−is (τ, t)µsi (τ)dτ +
ps∑

i=qs+1

t∫
0

Rp−is (τ, t)µsi (τ)dτ−

−
ps∑

i=qs+1

t∫
0

Rp+is (τ, t)νsi (τ)dτ −
n∑

i=ps+1

t∫
tsi (as(t),t)

Rp+is (τ, t)νsi (τ)dτ+

+
qs∑
i=1

t∫
tsi (as+1(t),t)

dτ
as+1(τ)∫

ϕs
i (t,as(τ),τ)

Qpis(y, τ, t)Φ
s
i (y, τ, u

s)dy+
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+
ps∑

i=qs+1

t∫
0

dτ
ϕs
i (t,as+1(τ),τ)∫
ϕs
i (t,as(τ),τ)

Qpis(y, τ, t)Φ
s
i (y, τ, u

s)dy+

+
n∑

i=ps+1

t∫
tsi (as(t),t)

dτ
ϕs
i (t,as+1(τ),τ)∫

as(τ)

Qpis(y, τ, u
s)Φs

i (y, τ, u
s)dy

]
=

= hp(t), p = q + 1, N. (30)

Equalities (29) have the form of Volterra equations of the second kind, and equal-
ities (30) have the form of Volterra equations of the first kind with respect to the
functions µsi (t) and νsi (t).

In order to present equations (30) as a Volterra equation of the second kind,
we will need formulas that easily follow from (26)–(28) and (11)–(15):

Rp−is (t, t) ≡ βpis(as(t), t)(λ
s
i (as(t), t)− a′s(t)),

Rp+is (t, t) ≡ βpis(as+1(t), t)(λsi (as+1(t), t)− a′s+1(t)),

Rp−is (tsi (as+1(t), t))
d

dt
tsi (as+1(t), t) ≡ βpis(as+1(t), t)(λsi (as+1(t), t)− a′s+1(t))×

× exp

(
−

t∫
tsi (as+1(t),t)

λsix
′(ϕsi (σ, as+1(t), t), σ)dσ

)
,

Rp+is (tsi (as(t), t))
d

dt
tsi (as(t), t) ≡ β

p
is(as(t), t)(λ

s
i (as(t), t)− a′s(t))×

× exp

(
−

t∫
tsi (as(t),t)

λsix
′(ϕsi (σ, as(t), t), σ)dσ

)
.

Since the left-hand and right-hand sides of (30) coincide at t = 0 and have con-
tinuous derivatives in t, then fulfilling these equalities is equivalent to fulfilling
the corresponding differentiated equalities. Differentiating with respect to t, tak-
ing into account the derived formulas and grouping similar terms, we obtain the
relations

m∑
s=0

[ ps∑
i=1

βpis(as(t), t)(λ
s
i (as(t), t)− a′s(t))µsi (t)−

−
n∑

i=qs+1
βpis(as+1(t), t)(λsi (as+1(t), t)− a′s+1(t))νsi (t)

]
=

=
m∑
s=0

[ qs∑
i=1

βpis(as+1(t), t)(λsi (as+1(t), t)− a′s+1(t))×

× exp

(
−

t∫
tsi (as+1(t),t)

λsix
′(ϕsi (σ, as+1(t), t), σ)dσ

)
µsi (t

s
i (as+1(t), t))−
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−
n∑

i=ps+1
βpis(as(t), t)(λ

s
i (as(t), t)− a′s(t))×

× exp

(
−

t∫
tsi (as(t),t)

λsix
′(ϕsi (σ, as(t), t), σ)dσ

)
νsi (t

s
i (as(t), t))−

−
qs∑
i=1

t∫
tsi (as+1(t),t)

Rp−ist
′
(τ, t)µsi (τ)dτ −

ps∑
i=qs+1

t∫
0

Rp−ist
′
(τ, t)µsi (τ)dτ+

+
ps∑

i=qs+1

t∫
0

Rp+ist
′
(τ, t)νsi (τ)dτ +

n∑
i=ps+1

t∫
tsi (as(t),t)

Rp+ist
′
(τ, t)νsi (τ)dτ+

+Gpis(Φ
s
i (y, τ, u

s(y, τ)), τ, t)
]
, p = q + 1, N, (31)

where

Gpis(Φ
s
i (y, τ, u

s(y, τ)), τ, t) ≡

≡ −
n∑
i=1

d
dt

t∫
γsi (t)

χs
i (τ,t)∫

ψs
i (τ,t)

Qpis(y, τ, t)Φ
s
i (y, τ, u

s)dy + hp′(t), p = q + 1, N,

γsi (t) =


tsi (as+1(t), t), if i = 1, qs,

0, if i = qs + 1, ps,

tsi (as(t), t), if i = ps, n,

ψsi (τ, t) =

{
ϕsi (t, as(τ), τ), if i = 1, ps,

as(t), if i = ps + 1, n,

χsi (τ, t) =

{
as+1(t), if i = 1, qs,

ϕsi (t, as+1(τ), τ), if i = qs + 1, n.

Equalities (28), (31) form a system of linear integro-functional equations with
respect to the functions µsi (t) and νsi (t), and the matrix formed by the coefficients
of these functions in the left-hand sides of the equations is A(t). According to
(6), the system (28), (31) can be written in the form

ν(t) = (Mν)(t) + (Kν)(t) + (Lu)(t) + (L̃f)(t) +H(t), (32)

where ν(t) = col(µ0
1(t), . . . , µ0

p0(t), . . . , µm1 (t), . . . , µmpm(t), ν0
q0+1(t), . . . , ν0

n(t), . . . ,
νmqm+1(t), . . . , νmn (t)); K is a Volterra type matrix linear integral operator, ele-

ments of which are linear combinations of integrals of the form
t∫

γsi (t)

Ks−
i (t, τ)µsi (τ)dτ
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and
t∫

γsi (t)

Ks−
i (t, τ)νsi (τ)dτ with continuous kernels, with γsi (t) = tsi (as+1(t), t) if

i = 1, qs, γ
s
i (t) = 0 for i = qs + 1, ps, and γsi (t) = tsi (as(t), t) for i = ps + 1, n.

L and L̃ are Volterra type matrix linear integral operators elements of which
have continuous kernels, that act on the vector-function u with components
usi (x, t) and the vector-function f with components fsi (x, t), respectively. H(t)
is a known continuous column vector of height N with elements hp(t)(p = 1, q),
hp′(t)(p = q + 1, N); M is an operator that has the form

(Mν)(t) = A(t)−1B(t)(Pν)(t),

where P is a shift operator defined by the formula

(Pµsi )(t) = µsi (t
s
i (as+1(t), t)), (Pνsi )(t) = νsi (t

s
i (as(t), t)),

and B(t) is the coefficient matrix of the functions (Pν)(t) in the right-hand sides
of equations (29) and (31). Obviously, B(0) coincides with the matrix introduced
in Section 2.

Since 0 6 tsi (ar(t), t) 6 t, r = s, s+ 1, s = 0,m, i = 1, n, for arbitrary ε > 0

the operator P maps the elements of the space
[
C[0, ε]

]N
to the elements of the

same space. Let the norm in this space be defined as follows: if ν = {νl} ∈[
C[0, ε]

]N
. Then ‖ν‖ =

∣∣∣ max
06t6ε

|νl(t)|
∣∣∣, where the outer vertical lines denote an

arbitrary of the norm in RN . Then from the obvious inequality

max
06t6ε

|(Pν)(t)| 6 max
06t6ε

|νl(t)|,

which turns into an equality for νl(t) ≡ const, it follows that the norm of the
operator P is 1.

Returning to condition (7) (in which the matrix norm is considered to be
consistent with the norm of the vectors in RN , so that |Aa| 6 |A| · |a|), we obtain,
from the continuity of the elements of matrices A(t) and B(t), the existence of

such ε > 0 such that the operator M in the space
[
C[0, ε]

]N
has a norm less than

1. But then equation (32) can be written as

ν(t) =
[
(I −M)−1(Kν + Lu+ L̃f +H)

]
(t), (33)

that is ([
I − (I −M)−1K

]
ν
)

(t) =
[
(I −M)−1(Lu+ L̃f +H)

]
(t).
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Since K is a Volterra type integral operator which, with sufficiently small
ε > 0, has a norm as small as desired, the operator I − (I − M)−1K can be
continuously inverted (this may require reducing the value of ε > 0), that is, we
can arrive at the equation

ν(t) =
[
(I − (I −M)−1K)−1(I −M)−1(Lu+ L̃f +H)

]
(t). (34)

On the other hand, equation (17) has the form

u(x, t) = (Qν)(x, t) + (L1u)(x, t) + (L̃1f)(x, t), (35)

where operator Q is a shift operator with norm 1, and L1 and L̃1 are Volterra type
matrix linear operators with continuous kernels. Moreover, for the operator Q to
be continuously defined and for a continuous vector-function ν(t) to determine
the continuity of the vector-function (Qν)(x, t), it is necessary and sufficient that
the vector-function ν(t) satisfies the condition

µsi (0) = νsi (0) (i = qs + 1, ps, s = 0,m). (36)

If the vector-function ν(t) satisfies condition (33), then

ν(0) =
[
(I −M)−1H

]
(0) =

[
I −A−1(0)B(0)

]−1
H(0). (37)

Hence we get

µsi (0) =

N∑
p=1

δlsi ,pH
p(0), νsi (0) =

N∑
p=1

δksi ,pH
p(0),

where the notations lsi and ksi are given in Section 2.
Thus, condition (36) coincides with (8) and therefore, if the latter is satis-

fied, then the vector-function ν, defined from (34), always generates a continuous
vector-function Qν. Substituting ν from (34) into (35), we rewrite the last equa-
tion as([

I −Q(I − (I −M)−1K)−1(I −M)−1L− L1

]
u
)

(x, t) =

=
[
Q(I − (I −M)−1K)−1(I −M)−1H

]
(x, t)+

+
([
Q(I − (I −M)−1K)−1(I −M)−1L̃+ L̃1

]
f
)

(x, t). (38)

Thus, the system of equations (17), (29), (31), which gives the solution to
the boundary value problem under consideration is equivalent to the system of
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equations (38), (34). Moreover, equation (38) does not contain ν. Since L and L1

are Volterra type integral operators, the operator I −Q(I − (I −M)−1K)−1(I −
M)−1L−L1 can be continuously inverted again, from which we obtain the whole
statement of Theorem 1. Note that all operator transformations mentioned here
can be done using the standard iteration method.

This concludes the proof of Theorem 1. Note that this theorem, due to its
local character, holds even if conditions (6) are replaced by detA(0) 6= 0. J

5. Corresponding Nonlocal Theorem

Let us first consider a mixed problem similar to the one considered in Sections
2 – 4, in the case where the interval in which the initial conditions are given is
nondegenerate. For 0 < ε < T < ∞ we denote Gε,T = {(x, t) ∈ G : ε < t < T}
and consider the system of equations (1) with boundary conditions (3), (4) and
initial conditions

usi (x, ε) = gsi (x), (as(ε) 6 x 6 as+1(ε), i = 1, n, s = 0,m) (39)

in the above domain. Let us assume that all functions gsi are continuous, and the
other given functions satisfy the conditions formulated in Section 2. Moreover,
condition (7) is dropped, and the agreement condition, instead of (8), takes the
form (s = 0,m)

n∑
i=1

m∑
s=0

[ s+1∑
k=s

αkpis (ε)gsi (ak(ε)) +
aa+1(ε)∫
as(ε)

βpis(y, ε)g
s
i (y)dy

]
= hp(ε), p = 1, q;

n∑
i=1

m∑
s=0

{
a′s+1(ε)βpis(as+1(ε), ε)gsi (as+1(ε))− a′s(ε)β

p
is(as(ε), ε)g

s
i (as(ε))+

+
as+1(ε)∫
as(ε)

∂βp
is(y,ε)
∂t gsi (y)dy +

as+1(ε)∫
as(ε)

βpis(y, ε)
[
− λsi (y, ε)

dgsi (y)
dy +

+
n∑
k=1

asik(y, ε)g
s
k(y) + f si (y, ε)

]
dy
}

= dhp(ε)
dt , p = q + 1, N, (40)

n∑
i=1

m∑
s=0

as+1(ε)∫
as(ε)

βpis(y, ε)g
s
i (y)dy = hp(ε), p = q + 1, N.

Definition 2. The piecewise continuous generalized solution of the system of
equations (1) in Gε,T is defined as a function u(x, t) that is uniformly continuous
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in every domain Gsε,T = {(x, t) ∈ Gs : ε < t < T} and satisfies a system of
integro-functional equations of the same form (17) as before, where

ωsi (x, t) =



usi (ϕ
s
i (ε, x, t), ε), if tsi,ε(x, t) = ε,

usi (as(ti,ε(x, t)), t
s
i,ε(x, t)), if tsi,ε(x, t) > ε,

ϕsi (t
s
i,ε(x, t), x, t) = as(t

s
i,ε(x, t)),

usi (as+1(tsi,ε(x, t)), t
s
i,ε(x, t)), if tsi,ε(x, t) > ε,

ϕsi (t
s
i,ε(x, t), x, t) = as+1(ti,ε(x, t)),

and by tsi,ε(x, t) we mean the smallest value τ > ε at which the function ϕsi (τ, x, t)
is defined. Such solution will be called a piecewise continuous generalized solution
of problems (1), (3), (4), (39) in Ḡε,T if it satisfies conditions (3), (4), (39) in
the ordinary sense.

From Definition 2 a simple but very important corollary follows immediately.

Corollary 1. Let ũ(˜̃u) be a piecewise continuous generalized solution of the sys-
tem of equations (1) in Ḡε,T1 (respectively ḠT1,T ), where 0 < ε < T1 < T ,
and ũ(x, T1) ≡ ˜̃u(x, T1). Then the vector-function u, that is equal to ũ in Ḡε,T1
and ˜̃u in ḠT1,T , is a piecewise continuous generalized solution of the system of
equations (1) in Ḡε,T . This corollary extends directly to ”gluing” solutions in
Ḡε and Ḡε,T , as well as to the case of ”gluing” solutions in several domains
Ḡε,T1 , ḠT1,T2 , . . . , ḠTp,T .

In the statement of the theorem on generalized solvability of the problem (1),
(3), (4), (39) let us list all assumptions about the given functions.

Theorem 2. Let for all i = 1, n, s = 0,m, k = s, s+ 1:

1) the functions λsi ∈ C2(Ḡsε,T ), asij, f
s
i ∈ C(Ḡsε,T );

2) the coefficients αkpis , hp ∈ C[ε, T ], βpis ∈ C(Ḡsε,T ), (p = 1, q);

3) the coefficients βpis ∈ C1(Ḡsε,T ), hp ∈ C1[ε, T ], (p = 1 + q,N);

4) gsi ∈ C[as(ε), as+1(ε)];

5) conditions (2), (6) for all t ∈ [ε, T ] be fulfilled;

6) the agreement conditions (40) be fulfilled.

Then the problem (1), (3), (4), (39) has a unique piecewise continuous gen-
eralized solution in Ḡε,T . This solution is continuous (in the sense of a uniform
metrics) and depends on the given functions hp(p = 1, q), hp′(p = 1 + q,N) and
all fsi and gsi (a similar explanation of this is as in Theorem 1).
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Proof. The proof is not essentially different from the one of Theorem 1. Here
it is convenient to divide the whole interval [ε, T ] into equal smaller intervals
[ε, T1], [T1, T2], . . . , [Tp, T ], so that in no domain ḠsTk,Tk+1

(k = 0, . . . , p, T0 = ε,

Tp+1 = T ) can any characteristic join one from the ”sides” of the other. Then,
according to Corollary 1, it suffices to prove it for any of the domains ḠsTk,Tk+1

;

in other words, without loss of generality, we can assume that the domain Ḡε,T
itself already possesses the above property. In that case, the transformation of
the boundary conditions described in the proof of Theorem 1 will make the terms
with multipliers µsi (t

s
i,ε(as+1(t), t))(i = 1, qs) and νsi (t

s
i,ε(as(t), t))(i = ps + 1, n)

disappear, that is, instead of (32) we get the equation

ν(t) = (Kν + Lu+ L̃f +Rg +H)(t), (41)

where K,L, L̃,H remain the same as before, and R is a linear bounded functional

operator, which maps
n∏
s=0

[
C[as(ε), as+1(ε)]

]n
into

[
C[ε, T ]

]N
.

In the above transformation, during the differentiation of the second group
of boundary conditions, we apply the last group of agreement conditions (40)
instead of equality hp(0) = 0.

From equation (41) it follows, without any assumption on the norm of the
operator K, that the operator I −K is inverse, that is, (41) is equivalent to

ν(t) =
[
(I −K)−1(Lu+ L̃f +Rg +H)

]
(t).

Substituting this expression into (35) (the piecewise continuity of the function
(Qν)(x, t) is ensured by the first two groups of agreement conditions (40)) leads
us to an equation with respect to u[

(I −Q(I −K)−1L− L1)u
]
(x, t) =

=
[
Q− (I −K)−1(L̃f +Rg +H)

]
(x, t) + (L̃1f)(x, t). (42)

Note that for sufficiently small ε the norm of the operators Q(I −K)−1L and L1

is as small as desired. By choosing ε such that
∣∣∣Q(I −K)−1L− L1

∣∣∣ < 1, we can

find the inverse operator to the operator I −Q(I −K)−1L−L1 in equation (42),
which in turn completes the proof of Theorem 2. J

From Theorems 1 and 2 we have

Theorem 3. Under the conditions of Theorem 1, the problem (1)–(4) has a
unique generalized piecewise continuous solution in Ḡ, which at each finite change
interval of t, depends continuously (in the sense of uniform metrics) on the given
functions hp(p = 1, q), hp′(p = q + 1, N) and all fsi .
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To prove this, we first use Theorem 1 to construct a solution in Ḡε, and then
apply Theorem 2 in Ḡε,T for an arbitrary T > ε to the initial condition

usi (x, ε)
∣∣∣
Ḡs

ε,T

= gsi (x) = usi (x, ε)
∣∣∣
Ḡs

ε

.

Then, from the boundary conditions (3), (4) and the conditions (4) differenti-
ated with respect to t (which are fulfilled in the ordinary sense) for t = ε it follows
that the agreement conditions (40) are fulfilled in Ḡε,T . According to Corollary
1, we obtain a piecewise continuous generalized solution of problem (1)–(4) in
ḠT which, in addition, is unique. From the previous considerations we obtain
the desired solution in Ḡ as t→∞.

6. The Case of a Semilinear System

Consider now in Gs, s = 0,m, a semilinear system

∂us

∂t
+ Λs

∂us

∂x
= Φs(x, t, us), s = 0,m, (43)

where us = (us1, . . . , u
s
n), Λs(x, t) is a given real continuously differentiable diag-

onal matrix with elements λsi (x, t)(i = 1, n) that satisfy condition (2), Φs is a
given function of x, t, us, nonlinear in general with respect to us.

Consider the problem: find in G a piecewise continuous generalized solution
of system (43) that satisfies conditions (3), (4), with the notion of generalized
solution introduced in Section 4 using equations (16), (17).

The following theorem is true.

Theorem 4. Assume that for all i = 1, n, s = 0,m the following holds:

1) the coefficients λsi ∈ C2(Ḡs) and satisfy conditions (2);

2) the functions Φs(x, t, us) ∈ C(Gs × Rn) and satisfy the Lipschitz condition
locally with respect to us:

∀ε > 0, ∀U > 0, ∃L > 0 :
∣∣∣Φs(x, t, ū)− Φs(x, t, ¯̄u)

∣∣∣ 6 L|ū− ¯̄u|

for as(t) 6 x 6 as+1(t), t ∈ [0, ε], |ū|, |¯̄u| 6 U ;

3) the functions αpis, h
p ∈ C(R+), βpis ∈ C(Ḡ), p = 1, q;

4) the functions hp ∈ C1(R+), βpis ∈ C1(Ḡ), p = 1 + q,N ;

5) conditions (6)–(8) are fulfilled.
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Then for some ε > 0 the problem (43), (3), (4) has a unique piecewise continuous
generalized solution in Ḡε.

The proof of Theorem 4 is similar to the one of Theorem 1, so let us limit
ourselves to some remarks only.

The transformation of boundary conditions is done similarly as in the proof of
Theorem 1 and leads to an equation of the form (32) in which a nonlinear matrix
operator of Volterra type (V u)(t) appears instead of (Lu)(t) + (L̃f)(t), which
satisfies the local Lipschitz condition. By putting t = 0, we find the value of (37)
for ν(0) the same as in Theorem 1. Instead of (38), we obtain the equation in Ḡε

u(x, t) =
[
Q(I − (I −M)−1K)−1(I −M)−1V + V1

]
u+

+
[
Q(I − (I −M)−1K)−1(I −M)−1H

]
(x, t),

(44)

where the operator V has the same properties as L. Consider an arbitrary U >
|ν(0)|. Then we see from formula (44) that if ε0 is sufficiently small, then for
0 < ε < ε0 the operator is defined by the right-hand side of this formula and
maps the ball Sε = {u : ‖u‖ 6 U} into itself. According to condition 2) of
Theorem 4, the function Φ in Ḡε0×Sε0 satisfies the Lipschitz condition. It follows
from the forms of the operators V and V1 that for any sufficiently small ε the
operator defined by the right-hand side of (44) satisfies the Lipschitz condition
with respect to u with some sufficiently small constant, that is, it is compressible.
The application of Banach theorem on compressible mappings completes the proof
of Theorem 4; note that according to the same Banach theorem, the desired
solution can be obtained by iteration method.

In contrast to Theorem 3, the generalized solution of (43), (3), (4), in general
cannot be extended to the whole domain Ḡ. It is not difficult to show that there
exists a maximal T ∈ (0,∞] for which the problem considered is solved in the
domain Ḡ ∩ {(x, t) : 0 6 t < T}. Moreover, if T <∞, then

m∑
s=0

n∑
i=1

max
as(t)6x6as+1(t)

|usi (x, t)| −−−→
t→T

∞.

Therefore, if an a priori estimate can be derived for the desired solution on
an arbitrary finite change interval of t, then T = ∞, that is, the solution can
be continued to the entire domain Ḡ. This will be the case, in particular, if the
functions Φs

i (x, t, u) have no more than linear growth in u, that is, there exist
continuous (possibly unbounded) functions F1(t), F2(t) (0 6 t < ∞) such that
for all s = 0,m, i = 1, n, (x, t) ∈ Ḡs, u ∈ Rn the equality∣∣∣Φs

i (x, t, u)
∣∣∣ 6 F1(t)u+ F2(t)
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is fulfilled.

Remark 1. The issue of constructing global solutions of nonlinear hyperbolic
problems is considered, for example, in [10, 11], but the sign-constancy and mono-
tonicity of the initial data are significantly used therein.

7. Comments

I. Considering the problems in Sections 2 – 6, we assumed the fulfillment of
some conditions (conditions (6), (7)). All other conditions of smoothness and
data agreement are natural, while the appearance of the mentioned conditions
may seem artificial at first glance.

Let us show by simple examples that the conditions introduced by us for
solving the considered problems are significant.

Example 1. Let G be a sector in the plane xOt, bounded by rays l1 and l2,
defined by equations x = −kt and x = kt, 0 < k < 1. In G consider the system

∂u1

∂t
+
∂u1

∂x
= 0,

∂u2

∂t
− ∂u2

∂x
= 0, t > 0, −kt < x < kt, (45)

with boundary conditions

u1(−kt, t)− 2u2(−kt, t) = 0, u2(kt, t)− 1

2
u1(kt, t) = 0, 0 6 t <∞. (46)

We obtain this problem from problem (1)–(4) if n = 2, m = 0, p0 = q0 =
p1 = q1 = 1, N = q = 2, and the coefficients and free terms are equal to the
corresponding constants. All assumptions of Sections 2 – 4 are satisfied here
except condition (7). Since

A =

(
1 0
0 1

)
, B =

(
0 −2
−1

2 0

)
,

the eigenvalues of the matrix A−1B are equal to ±1, so none of its norms can be
less than 1.

Let

u1(−kt, t) = µ1(t), u2(kt, t) = ν2(t).

Applying the method of characteristics, that is, equation (17), we obtain

u1(x, t) = µ1

( t− x
1 + k

)
, u2(x, t) = ν2

( t+ x

1 + k

)
.
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Substituting the found u1(x, t) and u2(x, t) into the boundary conditions (46), we
have

µ1(t) = 2ν2

(1− k
1 + k

t
)
, ν2(t) =

1

2
µ1

(1− k
1 + k

t
)
.

Hence µ1(t) = µ1(λ2t), λ = 1−k
1+k , and therefore µ1(t) = c, c = const.

From the second equation we have ν2(t) = 1
2c. Thus, the problem has an

infinite set of solutions: u1(x, t) ≡ c, u2(x, t) ≡ 1
2c.

Example 2. Suppose we need to find a solution to the system (45) in the domain
G of Example 1 that satisfies the conditions

u1(−kt, t)− u2(kt, t) = h1(t),

kt∫
−kt

(
u2(x, t)− u1(x, t)

)
dx = h2(t), (47)

where h1(t) and h2(t) are the given functions continuous in R+, h2(t) being con-
tinuously differentiable and h2(0) = 0. Condition (6) is not fulfilled here.

From equation (45) we have

u1(x, t) = g1(t− x), u2(x, t) = g2(t+ x),

where g1 and g2 are arbitrary continuous functions in R+. Requiring condition
(47) to be fulfilled, we obtain the relations

g1

(
(1 + k)t

)
− g2

(
(1 + k)t

)
= h1(t),

kt∫
−kt

[
− g1(t− x) + g2(t+ x)

]
dx = h2(t).

After changing the variable, the second condition becomes

(1+k)t∫
(1−k)t

[
g2(y)− g1(y)

]
dy = h2(t).

By differentiating it, we have

(1 + k)
[
g2((1 + k)t)− g1((1 + k)t)

]
− (1− k)

[
g2((1− k)t)− g1((1− k)t)

]
= h′2(t).

Comparing it to the first condition, we see that this problem is solvable if and
only if

(1 + k)h1(t) + (1− k)h1

(1− k
1 + k

t
)

+ h′2(t) ≡ 0.



The Darboux Problem with Nonlocal Boundary Conditions 139

If this condition is satisfied, then

g1(t) = g2(t) + h1

( t

1 + k

)
and the function g2(t) remains arbitrary.

This means that the problem either has no solution or has many solutions,
since it contains an arbitrary continuous function of one variable.

II. Let the characteristics of the system (1) that exit from the intersection
point of the boundary curves not fall into the domain of solution, and the addi-
tional conditions have the form

b(t)∫
a(t)

n∑
i=1

βpi (y, t)ui(y, t)dy = hp(t), p = 1, n. (48)

Problem (1), (48) can be obtained from problem (1)–(4) if m = 0, p0 = q0, q = 0,
a0(t) = a(t), a1(t) = b(t).

Suppose that a′(0) < b′(0) and

detAba(t) 6= 0, ∀t > 0, (49)

where

Aba(t) =

∥∥∥∥∥∥
β1

1(a(t), t) . . . β1
k(a(t), t) β1

k+1(b(t), t) . . . β1
n(b(t), t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
βn1 (a(t), t) . . . βnk (a(t), t) βnk+1(b(t), t) . . . βnn(b(t), t)

∥∥∥∥∥∥ ,
with the index value i = 1, k (k + 1, n) corresponding to λi(0, 0) > b′(0) (respec-
tively, λi(0, 0) < a′(0)).

Let us show that in this case conditions (6) and (7) are fulfilled. Indeed, from
the definitions of A(t) and B(0) it is not difficult to see, with the assumptions
made, that

A(t) = Aab (t)diag{λ1(a(t), t)− a′(t), . . . , λk(a(t), t)− a′(t),
b′(t)− λk+1(b(t), t), . . . , b′(t)− λn(b(t), t)},

B(0) = Aba(0)diag{λ1(0, 0)− b′(0), . . . , λk(0, 0)− b′(0),

a′(0)− λk+1(0, 0), . . . , a′(0)− λn(0, 0)}.

Since by condition all diagonal elements are nonzero, the conditions (49) and
(6) are equivalent. In addition,

A(0)−1B(0) = diag

{
λ1(0, 0)− b′(0)

λ1(0, 0)− a′(0)
, . . . ,

λk(0, 0)− b′(0)

λk(0, 0)− a′(0)
,
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a′(0)− λk+1(0, 0)

b′(0)− λk+1(0, 0)
, . . . ,

a′(0)− λn(0, 0)

b′(0)− λn(0, 0)

}
.

Since all the diagonal elements here are defined on the interval (0, 1), the norm
of the matrix A(0)−1B(0) is less than one. Thus, problem (1), (48) reduces to a
system of Volterra integro-functional equations of the second kind solvable by the
iteration method. In the considered case, conditions (7) follow from conditions
(6).

III. Condition (6) is an analogue of the well-known Lopatinsky condition for
classical boundary value problems for the elliptic type equations. For the class
of considered boundary value problems, it is, in general, vital and so cannot be
dropped.

IV. The scheme proposed in Sections 2 – 4 for investigating problem (1)–
(4) without modifications can also be used for the case where the curves γs(s =
0,m+ 1) (or some of them) are characteristics of the system (1) or (43). Thus,
the method described covers, in particular, some variant of the characteristic
problem for the system (1) or (43) (the Goursat-Darboux problem).

V. If the conditions of Theorem 1 are fulfill and, in addition, the smoothness
of all given functions is increased by 1, then it can be shown that the constructed
solution u is continuously differentiable in each domain Gs everywhere except
the characteristic x = ϕsi (t, 0, 0) (i = qs + 1, ps), along which, it has in general
a discontinuity of the first kind for the derivatives. To avoid this discontinuity,
that is, for the solution to be piecewise smooth, it is necessary and sufficient that
m∑
s=0

(ps − qs) additional first-order agreement conditions fulfil. These conditions

are rather cumbersome and can be obtained as follows. We differentiate by t
the relations (29) and (31) and, taking t = 0 after that, we obtain a system of
equations from which, since the values of µsi (0) and νsi (0) are already known, we
can find all the values of µsi

′(0) and νsi
′(0). (It is not difficult to check that the

corresponding determinant is nonzero; we have to use the formulas

dtsi (as+1(t), t)

dt

∣∣∣∣∣
t=0

=


λsi (0,0)−a′s+1(0)

λsi (0,0)−a′s(0) , i = 1, qs,
a′s(0)−λsi (0,0)
a′s+1(0)−λsi (0,0)

, i = ps + 1, n

to calculate it). On the other hand, for arbitrary s = 0,m, i = qs + 1, ps from
equation (1) we have

dusi (ϕ
s
i (t, 0, 0), t)

dt

∣∣∣∣∣
t=0

=
n∑
j=1

asij(0, 0)ωsi (0, 0) + fsi (0, 0)
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(the value of ωsi is defined by formula (17), i.e., we can also find it). From the
condition of no discontinuity on the characteristic x = ϕsi (t, 0, 0) we obtain the
relation

dusi (ϕ
s
i (t, 0, 0), t)

dt

∣∣∣∣∣
t=0

=
1

a′i+1(0)− a′i(0)
×

×
[
(λsi (0, 0)− a′i(0))µsi

′(0) + (a′i+1(0)− λsi (0, 0))νsi (0)
]
.

If we replace here the expression on the left-hand side and also µsi
′(0) and νsi

′(0)
by the values at zero of the given functions and their derivatives, we obtain the
necessary agreement conditions.

VI. If qs = ps (s = 0,m), i.e., from the origin the characteristics of the system
(1) or (43) do not fall into Gs, then the number of boundary conditions (3), (4)
equals the number of equations of the system (1) or (43) for each Gs, i.e., equal
to (m+ 1)n. In this case, the agreement conditions (8) are not needed.

VII. For the generalized solution to be not only piecewise continuous but also
continuous in Ḡ, conditions (3) must contain the equality

us−1
i (as(t), t) = usi (as(t), t), s = 1,m, i = 1, n.

Other conditions like (3) and (4) should be n+
m∑
s=0

(ps − qs).
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