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Some Knopp’s Core Type Theorems Via Ideals

O.H. Edely, M. Mursaleen∗

Abstract. In this paper, we characterize the matrix class (Ic ∩ l∞, Ic ∩ l∞)reg, where
Ic is the space of all ideal convergent sequences and l∞ denotes the space of all bounded
sequences. We use this class to establish some core theorems analogous to Knopp’s core
theorem.
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1. Introduction

Let C, R, N denote the set of all complex, real and natural numbers, re-
spectively, and T = (tnk)

∞
n,k=1 be an infinite matrix of complex entries tnk. By

T η = (Tn(η)) we denote the T -transform of the sequence η = (ηk)
∞
k=1, where

Tn(η) =
∑

k tnkηk, provided that the series on the right-hand side converges for
each n ∈ N. For any two sequence spaces X and Y, we write (X ,Y) for a class of
matrices T such that T η ∈ Y for η ∈ X . If in addition lim T η = lim η, then we
denote such a class by (X ,Y)reg. Let l∞ and c denote the spaces of all bounded
and convergent sequences, respectively. The matrix T is said to be regular, i.e.
T ∈ (c, c)reg if T η ∈ c for η ∈ c with lim T η = lim η. The necessary and sufficient
conditions (cf. Cook [5] ) for T to be regular are:

Lemma 1. T ∈ (c, c)reg if and only if the following conditions hold:

(i) ||T || = supn
∑

k |tnk| <∞;

(ii) limn tnk = 0, for each k;

(iii) limn
∑

k tnk = 1.
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The Knopp core or K−core of a real bounded sequence η = (ηk)
∞
k=1 is defined

to be the closed interval [`(η),L(η)], where `(η) = lim inf η; L(η) = lim sup η.
The well-known Knopp’s core theorem states that (cf. Knopp [21], Maddox
[28]): In order that L(T η) ≤ L(η) for every real bounded sequence η, it is
necessary and sufficient that T should be regular and limn

∑
k | tnk |= 1. Note

that L(T η) ≤ L(η) means K − core{T η} ⊆ K − core{η}. Shcherbakov [36] has
shown that for every bounded complex sequence η,

K − core{η} =
⋂
z∈ C

Kη(z),

where
Kη(z) := {w ∈ C : | w − z | ≤ lim sup

k
| ηk − z |} .

The concept of K−core has been extended to the statistical core [18] and
I−core [8] for a complex number sequence η.

Let S 6= ∅. Recall that a non-empty class I ⊆ 2S of subsets of S is called ideal
if (i) ∅ ∈ I, (ii) D1∪D2 ∈ I for D1,D2 ∈ I, (iii) D1 ∈ I, D2 ⊆ D1 =⇒ D2 ∈ I. An
ideal I is called non-trivial if I 6= ∅, S /∈ I, and is called admissible if {s} ∈ I, for
each s ∈ S. A non-empty class F ⊆ 2S of subsets of S is called Filter if (i) ∅ /∈ F ,
(ii) D1 ∩ D2 ∈ F for D1,D2 ∈ F , (iii) D1 ∈ F , D2 ⊇ D1 =⇒ D2 ∈ F . Let I be a
non-trivial ideal in S. Then the filter F (I) = {M = S \ U : U ∈ I} is called the
filter associated with the ideal I. The concepts of I and I∗−convergence have
been introduced and studied by Kostyrko et al. [23]. Throughout the paper, I
will be a non-trivial admissible ideal in N.

2. Preliminaries

Definition 1. A real sequence η = (ηk) is said to be I−convergent to ξ ∈ R if
{k : |ηk − ξ| ≥ ε, for every ε > 0} ∈ I, and we write I − limk ηk = ξ. We denote
the set of all I−convergent sequences by Ic.

Definition 2. A real sequence η = (ηk) is said to be I∗−convergent to ξ ∈ R if
there is a set M = N \ U = {mi}∞i=1 ∈ F(I) such that limi ηmi = ξ. In this case,
we write I∗ − lim ηk = ξ and we denote the set of all I∗−convergent sequences
by I∗c .

Remark 1. (a) c ⊆ Ic.

(b) I∗c ⊆ Ic, and equality hold if and only if I satisfy (AP) condition [23], i.e.
if for every sequence (An) of pairwise disjoint sets from I there are sets
Bn ⊂ N, n ∈ N such that the symmetric difference An∆Bn is finite for
every n and ∪nBn ∈ I.
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(c) If I = Iδ =
{
U ⊆ N : δ(U) = limn

|{k≤n:k∈U}|
n = 0

}
, where |.| denotes the

cardinality of the enclosed set, then I−convergence coincide with the sta-
tistical convergence due to [13], and we denote the set of all statistically
convergent sequences by st.

(d) If η ∈ Ic, then η need not be bounded. For example, let U be any infinite
set such that U ∈ I and let η = (ηk) be defined as

ηk =

{
k , if k ∈ U ,
0 , otherwise .

Then η is I convergent to zero but not bounded.

In [23], [8] and [24], the concepts of statistical bounded, statistical clus-
ter point and statistical limit superior and inferior [17] have been extended to
I−bounded, I−cluster point and I−limit superior and inferior of a real sequence
η = (ηk) and some related properties have been proved.

Definition 3. A sequence η = (ηk) is said to be I−bounded if there is a number
t > 0 such that {k : |ηk| > t} ∈ I.

Definition 4. A number ξ is said to be I−cluster point of a sequence η = (ηk) if
the set {k : |ηk − ξ| < ε} /∈ I for each ε > 0 and we denote the set of all I−cluster
points by I (Γη) .

Definition 5. The concept of I−limit superior and inferior of a real sequence
η = (ηk) is defined as

I − lim sup η =

{
supBη , if Bη 6= ∅,
−∞ , if Bη = ∅,

I − lim inf η =

{
inf Cη , if Cη 6= ∅,
∞ , if Cη = ∅,

where

Bη = {g ∈ R : {k : ηk > g} /∈ I} and Cη = {g ∈ R : {k : ηk < g} /∈ I} .

Remark 2. (a) If I = Iδ, then we have statistical bounded, statistical cluster
point and statistical limit superior and inferior.

(b) If η ∈ l∞ or η ∈ Ic, then η is I−bounded.

(c) If η is I− bounded, then I−limit superior and inferior are finite.
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Lemma 2. (i) (see [8]) For every real sequence η = (ηk)

lim inf η ≤ I − lim inf η ≤ I − lim sup η ≤ lim sup η.

(ii) (see [8]) The I−bounded sequence η is I−convergent if and only if I −
lim inf η = I − lim sup η.

(iii) (see [24]) Let η ∈ l∞. Then

I − lim sup η = max I (Γη) , I − lim inf η = min I (Γη) .

Remark 3. From (ii) and (iii) of Lemma 2, we can say that: If η ∈ l∞, then
η is I−convergent if and only if I (Γη) = {ξ}.

Demirci [8] defined I−core of a complex sequence η as follows.

Definition 6. Let η be an I− bounded sequence and let for each z ∈ C

Bη (z) =

{
w ∈ C : |w − z| ≤ I − lim sup

k
|ηk − z|

}
.

Then

I−core {η} =
⋂
z∈C

Bη (z) .

Remark 4. For any I−bounded real sequence η, we have

(a) I−core {η} = [I − lim inf η, I − lim sup η] .

(b) From Lemma 2 (i) and the definition of K−core, we have I − core{η} ⊆
K − core {η} .

(c) From Lemma 2 (iii), we have I (Γη) ⊆ I − core{η}.

More generalizations and applications of statistical convergence and recent
works on ideal convergence can be found in ([1], [2], [3], [4], [6], [7], [10] [14], [15],
[16], [31], [34]) and ([9] , [11], [12], [19], [20], [26], [29], [32], [33], [35]).

Analogous to the Knopp core theorem, the sufficient conditions for

K − core{T η} ⊆ I − core{η}

were obtained in [8] for every bounded complex sequence η; and the necessary
and sufficient conditions were given in [25].
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In [27] and [30], the necessary and sufficient conditions have been obtained
for T to yield

st− core{T η} ⊆ K − core{η},

and moreover
st− core{T η} ⊆ st− core{η}.

We generalize these results to establish necessary and sufficient conditions to
prove some core theorems.

3. Some matrix classes involving the space Ic and core theorems

We state the following results with slight modifications of some matrix trans-
formation involving the space Ic due to Kolk [22].

Lemma 3. Let I be an admissible ideal satisfying (AP) condition. Then T ∈
(Ic ∩ l∞, c)reg if and only if

(i) T ∈ (c, c)reg ;

(ii) limn
∑

k∈U |tnk| = 0, for every U ∈ I.

Lemma 4. Let I be an admissible ideal satisfying (AP) condition. Then T ∈
(c, Ic ∩ l∞)reg if and only if

(i) ‖T ‖ <∞;

there exists N = {ni} such that N ∈ F (I) and

(ii) I − lim
n
tnk = lim

i
tnik = 0, (k ∈ N) ;

(iii) I − limn
∑

k tnk = limi
∑

k tnik = 1.

We need the following lemma which is an I−analogue of the results of Simons
[37] (Corollary 12, Theorem 11).

Lemma 5. Let I be an admissible ideal satisfying (AP) condition. If ‖T ‖ <
∞ and there exists N = {ni} such that N ∈ F (I) and I − lim supn tnk =
lim supi tnik = 0, then there exists y ∈ l∞ such that ‖y‖ ≤ 1 and

lim sup
i

∑
k

tnikyk = lim sup
i

∑
k

|tnik| ,

i.e.
I − lim sup

n

∑
k

tnkyk = I − lim sup
n

∑
k

|tnk| .
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To prove our theorems we need first to characterize the matrix class (Ic ∩ l∞, Ic ∩ l∞)reg .

Theorem 1. Let I be an admissible ideal satisfying (AP) condition. Then T ∈
(Ic ∩ l∞, Ic ∩ l∞)reg if and only if

(1.1) T ∈ (c, Ic ∩ l∞)reg ;

(1.2) there exists N = {ni} such that N ∈ F (I) and limi
∑

k∈U |tnik| = I−
limn

∑
k∈U |tnk| = 0, for every U ∈ I.

Proof. Let T ∈ (Ic ∩ l∞, Ic ∩ l∞)reg and I − lim η = I − lim T η = ξ, say.
Since c ⊂ Ic, we have T ∈ (c, Ic ∩ l∞)reg.

Let U ⊆ N be such that ∅ 6= U ∈ I and let η ∈ l∞ be defined by

ηk =

{
1 , if k ∈ U ,
0 , otherwise.

Then I − lim η = 0 and so I − lim T η = 0. Hence T satisfies the conditions
in Lemma 5 and so we have I− limn

∑
k∈U |tnk| = 0, whenever U ∈ I.

Conversely. Suppose that (1.1) and (1.2) hold and η ∈ Ic∩l∞ with I−lim η =
ξ. Let U = {k : |ηk − ξ| ≥ ε} ∈ I for ε > 0. We have

I − lim T η = I − lim

(∑
k

tnk (ηk − ξ) + ξ
∑
k

tnk

)
.

Using Lemma 4, we have

I − lim T η = I − lim
n

∑
k

tnk (ηk − ξ) + ξ. (1)

Since ∣∣∣∣∣∑
k

tnk (ηk − ξ)

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈U

tnk (ηk − ξ) +
∑
k/∈U

tnk (ηk − ξ)

∣∣∣∣∣
≤ ‖ηk − ξ‖

∑
k∈U
|tnk|+ ε ‖T ‖ .

Since ‖T ‖ <∞ by condition (1.1), applying condition (1.2), we have

I − lim
n

∑
k

tnk (ηk − ξ) = 0.

Hence (1) implies that

I − lim T η = ξ = I − lim η,

i.e. T ∈ (Ic ∩ l∞, Ic ∩ l∞)reg, which completes the proof. J
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Theorem 2. Let I be an admissible ideal that satisfies (AP) condition. If ‖T ‖ <
∞, then for every η ∈ l∞

I − core {T η} ⊆ K − core {η} (2)

if and only if the following conditions hold:

(2.1) T ∈ (c, Ic ∩ l∞)reg ;

(2.2) I − limn
∑

k∈D |tnk| = 1, whenever D ∈ F (I) and N\D is finite.

Proof. Suppose that (2) holds and η ∈ c is such that limk ηk = ξ. Then

I − core{T η} ⊆ K − core {η} = {ξ} .

Since T η ∈ l∞ for η ∈ l∞, from Lemma 2 (iii), we have T η has at least one
I−cluster point. From Remark 4 (c), we have

∅ 6= I (ΓT η) ⊆ I − core{T η} ⊆ K − core{η} = {ξ}.

Hence from Remark 3, T η is I−convergent to ξ, i.e. T ∈ (c, Ic ∩ l∞)reg.

Let D ∈ F (I) be such that N\D is finite and define the sequence η = (ηk) by

ηk =

{
1 , if k ∈ D,
0 , otherwise.

Then lim ηk = 1 and hence we have

∅ 6= I − core{T η} ⊆ K − core{η} = {1}.

Therefore, 1 is the only cluster point of T η. Hence by Remark 3, we have
I − lim T η = 1. Since I is admissible ideal satisfying (AP) condition, by Lemma
5, we have

I − lim
n

∑
k∈D
|tnk| = 1, whenever D ∈ F (I) and N\D is finite.

Conversely, let conditions (2.1) and (2.2) hold and w ∈ I − core{T η}. Then
for any z ∈ C, we have

| w − z |≤ I − lim sup
n

| z − Tn(η) |

= I − lim sup
n

| z −
∑
k

tnkηk |
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≤ I − lim sup
n

|
∑
k

tnk(z − ηk) | +I − lim sup
n

| z || 1−
∑
k

tnk | .

Using condition (2.2), we have

| w − z |≤ I − lim sup
n

∣∣∣∣∣∑
k

tnk(z − ηk)

∣∣∣∣∣ . (3)

Let α = lim supk | z − ηk | and U = {k :| z − ηk |> α+ ε} for ε > 0. Then U
is a finite set and hence U ∈ I, so we have

|
∑
k

tnk(z − ηk) |≤ sup
k
| z − ηk |

∑
k∈U
| tnk | +(α+ ε)

∑
k 6∈U
| tnk | .

Therefore, by conditions (2.1), (2.2) and Remark 5 (a), we obtain

I − lim sup
n

|
∑
k

tnk(z − ηk) |≤ α+ ε.

Hence (3) implies that
| w − z |≤ α+ ε,

and since ε is arbitrary,

| w − z |≤ α = lim sup
k

| z − ηk |,

i.e. w ∈ Kη(z). Hence w ∈ K − core{η}, and so

I − core{T η} ⊆ K − core{η}.

This completes the proof of the theorem. J

Remark 5. (a) If I − limn
∑

k∈D |tnk| = 1 whenever N\D is finite, then

I − lim
n

∑
k∈U
|tnk| = 0, for any finite set U .

(b) We can not replace condition (2.2) by

I − lim
n

∑
k∈D
|tnk| = 1, whenever D ∈ F(I). (4)

Consider the following example.
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Example 1. Let I be an admissible ideal that satisfies (AP) condition and let
H = {hi}∞i=1 be any infinite set in I. Define T = (tnk) as

tnk =

{
1 , n /∈ H, k = min {hi} > n,
0 , otherwise.

Then ∑
k

tnk =

{
1 , n /∈ H,
0 , otherwise.

It is easy to see that T is not regular but T ∈ (c, Ic∩ `∞)reg. Further, for any
set D ∈ F(I) such that N\D is finite we have

I − lim
n

∑
k∈D
|tnk| = 1.

So for any η ∈ l∞, we have

I − core{T η} ⊆ K − core{η}.

Now, let M = N\H. Then M∈ F(I) and we have∑
k∈M

tnk = 0, ∀ n.

Hence
I − lim

n

∑
k∈M

|tnk| = 0.

Further, for any η ∈ l∞, e.g. η = (1, 1, · · · ), we have K − core{η} = {1} and∑
k

tnkηk =

{
1 , n /∈ H,
0 , otherwise.

Hence we have I − core{T η} = K − core{η} = {1}.
Therefore, we see that (2.2) holds but (4) does not hold.

Theorem 3. Let I be an admissible ideal that satisfies (AP) condition. If ‖T ‖ <
∞, then for every η ∈ l∞

I − core {T η} ⊆ I − core {η} (5)

if and only if the following conditions hold:

(3.1) T ∈ (Ic ∩ `∞, Ic ∩ `∞)reg;



152 O.H. Edely, M. Mursaleen

(3.2) I − limn
∑

k∈D |tnk| = 1, whenever D ∈ F(I).

Proof. Suppose that (5) holds and let η ∈ Ic ∩ `∞ be such that I − lim η = ξ.
Then

I − core {T η} ⊆ I − core {η} = {ξ}.

Since ‖T ‖ < ∞ implies T η ∈ `∞ for η ∈ `∞, from Remark 4 (a), we have
I − core {T η} 6= ∅. Hence I − core {T η} = {ξ}, i.e. T ∈ (Ic ∩ `∞, Ic ∩ `∞)reg.

Let D ⊆ N be such that D ∈ F(I) and let χD be the characteristic function
of D defined as

χD(d) =

{
1 , if d ∈ D
0 , otherwise.

Then

I − core{χD} = {1}.

Since ‖T ‖ < ∞ implies T χD ∈ `∞ for χD ∈ `∞, from Lemma 2 (iii) it follows
that T χD has at least one I−cluster point. Therefore, I − core{T χD} 6= ∅.
Also I − core{T χD} = {1}, since I − core{T χD} ⊆ I − core{χD} = {1}, hence
I − lim T χD = 1. Using Lemma 5, we have

I − lim
n

∑
k∈D
|tnk| = 1,whenever D ∈ F(I).

Conversely. Let w ∈ I − core{T η}. We proceed along the same lines as in
Theorem 2. Then we arrive at

| w − z |≤ α,where α = I − lim sup
k

| z − ηk |, for any z ∈ C,

by using conditions (3.1), (3.2) and Remark 6. So w ∈ Bη(z). Hence w ∈
I − core{η}, i.e.

I − core{T η} ⊆ I − core{η}.

This completes the proof. J

Remark 6. If I − limn
∑

k∈D |tnk| = 1 for any D ∈ F(I), then

I − lim sup
n

∑
k∈U
|tnk| = 0, whenever U ∈ I .
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