Azerbaijan Journal of Mathematics V. 13, No 1, 2023, January ISSN 2218-6816

Some Knopp's Core Type Theorems Via Ideals

O.H. Edely, M. Mursaleen^{*}

Abstract. In this paper, we characterize the matrix class $(\mathcal{I}_c \cap l_\infty, \mathcal{I}_c \cap l_\infty)_{reg}$, where \mathcal{I}_c is the space of all ideal convergent sequences and l_∞ denotes the space of all bounded sequences. We use this class to establish some core theorems analogous to Knopp's core theorem.

Key Words and Phrases: I-convergence, I_c -convergence, matrix transformations, Knopp's core, I-core, Knopp's core theorem.

2010 Mathematics Subject Classifications: 40A35, 40G15, 40H05

1. Introduction

Let \mathbb{C} , \mathbb{R} , \mathbb{N} denote the set of all complex, real and natural numbers, respectively, and $\mathcal{T} = (t_{nk})_{n,k=1}^{\infty}$ be an infinite matrix of complex entries t_{nk} . By $\mathcal{T}\eta = (\mathcal{T}_n(\eta))$ we denote the \mathcal{T} -transform of the sequence $\eta = (\eta_k)_{k=1}^{\infty}$, where $\mathcal{T}_n(\eta) = \sum_k t_{nk}\eta_k$, provided that the series on the right-hand side converges for each $n \in \mathbb{N}$. For any two sequence spaces \mathcal{X} and \mathcal{Y} , we write $(\mathcal{X}, \mathcal{Y})$ for a class of matrices \mathcal{T} such that $\mathcal{T}\eta \in \mathcal{Y}$ for $\eta \in \mathcal{X}$. If in addition $\lim \mathcal{T}\eta = \lim \eta$, then we denote such a class by $(\mathcal{X}, \mathcal{Y})_{reg}$. Let l_{∞} and c denote the spaces of all bounded and convergent sequences, respectively. The matrix \mathcal{T} is said to be regular, i.e. $\mathcal{T} \in (c, c)_{reg}$ if $\mathcal{T}\eta \in c$ for $\eta \in c$ with $\lim \mathcal{T}\eta = \lim \eta$. The necessary and sufficient conditions (cf. Cook [5]) for \mathcal{T} to be regular are:

Lemma 1. $\mathcal{T} \in (c, c)_{reg}$ if and only if the following conditions hold:

- (i) $||\mathcal{T}|| = \sup_n \sum_k |t_{nk}| < \infty;$
- (*ii*) $\lim_{n \to \infty} t_{nk} = 0$, for each k;
- (*iii*) $\lim_{n \to k} t_{nk} = 1$.

http://www.azjm.org

143

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

The Knopp core or \mathcal{K} -core of a real bounded sequence $\eta = (\eta_k)_{k=1}^{\infty}$ is defined to be the closed interval $[\ell(\eta), \mathcal{L}(\eta)]$, where $\ell(\eta) = \liminf \eta$; $\mathcal{L}(\eta) = \limsup \eta$. The well-known Knopp's core theorem states that (cf. Knopp [21], Maddox [28]): In order that $\mathcal{L}(\mathcal{T}\eta) \leq \mathcal{L}(\eta)$ for every real bounded sequence η , it is necessary and sufficient that \mathcal{T} should be regular and $\lim_n \sum_k |t_{nk}| = 1$. Note that $\mathcal{L}(\mathcal{T}\eta) \leq \mathcal{L}(\eta)$ means $\mathcal{K} - core\{\mathcal{T}\eta\} \subseteq \mathcal{K} - core\{\eta\}$. Shcherbakov [36] has shown that for every bounded complex sequence η ,

where

$$K_{\eta}(z) := \{ w \in \mathbb{C} : | w - z | \le \limsup_{k} | \eta_{k} - z | \}$$

 $\mathcal{K} - core\{\eta\} = \bigcap_{z \in \mathbb{C}} K_{\eta}(z),$

The concept of \mathcal{K} -core has been extended to the statistical core [18] and \mathcal{I} -core [8] for a complex number sequence η .

Let $S \neq \emptyset$. Recall that a non-empty class $\mathcal{I} \subseteq 2^{\mathcal{S}}$ of subsets of \mathcal{S} is called ideal if (i) $\emptyset \in \mathcal{I}$, (ii) $\mathcal{D}_1 \cup \mathcal{D}_2 \in \mathcal{I}$ for $\mathcal{D}_1, \mathcal{D}_2 \in \mathcal{I}$, (iii) $\mathcal{D}_1 \in \mathfrak{I}, \mathcal{D}_2 \subseteq \mathcal{D}_1 \Longrightarrow \mathcal{D}_2 \in \mathcal{I}$. An ideal \mathcal{I} is called non-trivial if $\mathcal{I} \neq \emptyset, \mathcal{S} \notin \mathcal{I}$, and is called admissible if $\{s\} \in \mathcal{I}$, for each $s \in \mathcal{S}$. A non-empty class $\mathcal{F} \subseteq 2^{\mathcal{S}}$ of subsets of \mathcal{S} is called Filter if (i) $\emptyset \notin \mathcal{F}$, (ii) $\mathcal{D}_1 \cap \mathcal{D}_2 \in \mathcal{F}$ for $\mathcal{D}_1, \mathcal{D}_2 \in \mathcal{F}$, (iii) $\mathcal{D}_1 \in \mathcal{F}, \mathcal{D}_2 \supseteq \mathcal{D}_1 \Longrightarrow \mathcal{D}_2 \in \mathcal{F}$. Let \mathcal{I} be a non-trivial ideal in \mathcal{S} . Then the filter $\mathcal{F}(\mathcal{I}) = \{\mathcal{M} = \mathcal{S} \setminus \mathcal{U} : \mathcal{U} \in \mathcal{I}\}$ is called the filter associated with the ideal \mathcal{I} . The concepts of \mathcal{I} and \mathcal{I}^* -convergence have been introduced and studied by Kostyrko et al. [23]. Throughout the paper, \mathcal{I} will be a non-trivial admissible ideal in \mathbb{N} .

2. Preliminaries

Definition 1. A real sequence $\eta = (\eta_k)$ is said to be \mathcal{I} -convergent to $\xi \in \mathbb{R}$ if $\{k : |\eta_k - \xi| \ge \epsilon$, for every $\epsilon > 0\} \in \mathcal{I}$, and we write $\mathcal{I} - \lim_k \eta_k = \xi$. We denote the set of all \mathcal{I} -convergent sequences by \mathcal{I}_c .

Definition 2. A real sequence $\eta = (\eta_k)$ is said to be \mathcal{I}^* -convergent to $\xi \in \mathbb{R}$ if there is a set $\mathcal{M} = \mathbb{N} \setminus \mathcal{U} = \{m_i\}_{i=1}^{\infty} \in \mathcal{F}(\mathcal{I})$ such that $\lim_i \eta_{m_i} = \xi$. In this case, we write $\mathcal{I}^* - \lim \eta_k = \xi$ and we denote the set of all \mathcal{I}^* -convergent sequences by \mathcal{I}_c^* .

Remark 1. (a) $c \subseteq \mathcal{I}_c$.

(b) $\mathcal{I}_c^* \subseteq \mathcal{I}_c$, and equality hold if and only if \mathcal{I} satisfy (\mathcal{AP}) condition [23], i.e. if for every sequence (\mathcal{A}_n) of pairwise disjoint sets from \mathcal{I} there are sets $\mathcal{B}_n \subset \mathbb{N}, n \in \mathbb{N}$ such that the symmetric difference $\mathcal{A}_n \Delta \mathcal{B}_n$ is finite for every n and $\cup_n \mathcal{B}_n \in \mathcal{I}$.

- (c) If $\mathcal{I} = \mathcal{I}_{\delta} = \left\{ \mathcal{U} \subseteq \mathbb{N} : \delta(\mathcal{U}) = \lim_{n \to \infty} \frac{|\{k \leq n: k \in \mathcal{U}\}|}{n} = 0 \right\}$, where |.| denotes the cardinality of the enclosed set, then \mathcal{I} -convergence coincide with the statistical convergence due to [13], and we denote the set of all statistically convergent sequences by st.
- (d) If $\eta \in \mathcal{I}_c$, then η need not be bounded. For example, let \mathcal{U} be any infinite set such that $\mathcal{U} \in \mathcal{I}$ and let $\eta = (\eta_k)$ be defined as

$$\eta_k = \begin{cases} k & , \text{ if } k \in U, \\ 0 & , \text{ otherwise }. \end{cases}$$

Then η is \mathcal{I} convergent to zero but not bounded.

In [23], [8] and [24], the concepts of statistical bounded, statistical cluster point and statistical limit superior and inferior [17] have been extended to \mathcal{I} -bounded, \mathcal{I} -cluster point and \mathcal{I} -limit superior and inferior of a real sequence $\eta = (\eta_k)$ and some related properties have been proved.

Definition 3. A sequence $\eta = (\eta_k)$ is said to be \mathcal{I} -bounded if there is a number t > 0 such that $\{k : |\eta_k| > t\} \in \mathcal{I}$.

Definition 4. A number ξ is said to be \mathcal{I} -cluster point of a sequence $\eta = (\eta_k)$ if the set $\{k : |\eta_k - \xi| < \epsilon\} \notin \mathcal{I}$ for each $\epsilon > 0$ and we denote the set of all \mathcal{I} -cluster points by $\mathcal{I}(\Gamma_{\eta})$.

Definition 5. The concept of \mathcal{I} -limit superior and inferior of a real sequence $\eta = (\eta_k)$ is defined as

$$\mathcal{I} - \limsup \eta = \begin{cases} \sup \mathcal{B}_{\eta} &, \text{ if } \mathcal{B}_{\eta} \neq \emptyset, \\ -\infty &, \text{ if } \mathcal{B}_{\eta} = \emptyset, \end{cases}$$
$$\mathcal{I} - \liminf \eta = \begin{cases} \inf \mathcal{C}_{\eta} &, \text{ if } \mathcal{C}_{\eta} \neq \emptyset, \\ \infty &, \text{ if } \mathcal{C}_{\eta} = \emptyset, \end{cases}$$

where

$$\mathcal{B}_{\eta} = \{g \in \mathbb{R} : \{k : \eta_k > g\} \notin \mathcal{I}\} \text{ and } \mathcal{C}_{\eta} = \{g \in \mathbb{R} : \{k : \eta_k < g\} \notin \mathcal{I}\}.$$

Remark 2. (a) If $\mathcal{I} = \mathcal{I}_{\delta}$, then we have statistical bounded, statistical cluster point and statistical limit superior and inferior.

- (b) If $\eta \in l_{\infty}$ or $\eta \in \mathcal{I}_c$, then η is \mathcal{I} -bounded.
- (c) If η is \mathcal{I} -bounded, then \mathcal{I} -limit superior and inferior are finite.

Lemma 2. (i) (see [8]) For every real sequence $\eta = (\eta_k)$

$$\liminf \eta \leq \mathcal{I} - \liminf \eta \leq \mathcal{I} - \limsup \eta \leq \limsup \eta$$

(ii) (see [8]) The \mathcal{I} -bounded sequence η is \mathcal{I} -convergent if and only if \mathcal{I} - lim inf $\eta = \mathcal{I}$ - lim sup η .

(iii) (see [24]) Let $\eta \in l_{\infty}$. Then

$$\mathcal{I} - \limsup \eta = \max \mathcal{I}(\Gamma_{\eta}), \quad \mathcal{I} - \liminf \eta = \min \mathcal{I}(\Gamma_{\eta}).$$

Remark 3. From (ii) and (iii) of Lemma 2, we can say that: If $\eta \in l_{\infty}$, then η is \mathcal{I} -convergent if and only if $\mathcal{I}(\Gamma_{\eta}) = \{\xi\}$.

Demirci [8] defined \mathcal{I} -core of a complex sequence η as follows.

Definition 6. Let η be an \mathcal{I} -bounded sequence and let for each $z \in \mathbb{C}$

$$B_{\eta}(z) = \left\{ w \in \mathbb{C} : |w - z| \leq \mathcal{I} - \limsup_{k} |\eta_{k} - z| \right\}.$$

Then

$$\mathcal{I}-core\left\{\eta\right\}=\bigcap_{z\in\mathbb{C}}B_{\eta}\left(z\right).$$

Remark 4. For any \mathcal{I} -bounded real sequence η , we have

- (a) \mathcal{I} -core { η } = [\mathcal{I} lim inf η , \mathcal{I} lim sup η].
- (b) From Lemma 2 (i) and the definition of \mathcal{K} -core, we have \mathcal{I} -core $\{\eta\} \subseteq \mathcal{K}$ -core $\{\eta\}$.
- (c) From Lemma 2 (iii), we have $\mathcal{I}(\Gamma_{\eta}) \subseteq \mathcal{I} core\{\eta\}$.

More generalizations and applications of statistical convergence and recent works on ideal convergence can be found in ([1], [2], [3], [4], [6], [7], [10] [14], [15], [16], [31], [34]) and ([9], [11], [12], [19], [20], [26], [29], [32], [33], [35]).

Analogous to the Knopp core theorem, the sufficient conditions for

$$\mathcal{K} - core\{\mathcal{T}\eta\} \subseteq \mathcal{I} - core\{\eta\}$$

were obtained in [8] for every bounded complex sequence η ; and the necessary and sufficient conditions were given in [25].

In [27] and [30], the necessary and sufficient conditions have been obtained for \mathcal{T} to yield

$$st - core\{\mathcal{T}\eta\} \subseteq \mathcal{K} - core\{\eta\},\$$

and moreover

$$st - core\{\mathcal{T}\eta\} \subseteq st - core\{\eta\}.$$

We generalize these results to establish necessary and sufficient conditions to prove some core theorems.

3. Some matrix classes involving the space \mathcal{I}_c and core theorems

We state the following results with slight modifications of some matrix transformation involving the space \mathcal{I}_c due to Kolk [22].

Lemma 3. Let \mathcal{I} be an admissible ideal satisfying (\mathcal{AP}) condition. Then $\mathcal{T} \in (\mathcal{I}_c \cap l_\infty, c)_{req}$ if and only if

(i)
$$\mathcal{T} \in (c,c)_{req}$$
;

(ii) $\lim_{n \to k \in \mathcal{U}} |t_{nk}| = 0$, for every $\mathcal{U} \in \mathcal{I}$.

Lemma 4. Let \mathcal{I} be an admissible ideal satisfying (\mathcal{AP}) condition. Then $\mathcal{T} \in (c, \mathcal{I}_c \cap l_\infty)_{reg}$ if and only if

- (i) $\|\mathcal{T}\| < \infty$; there exists $\mathcal{N} = \{n_i\}$ such that $\mathcal{N} \in \mathcal{F}(\mathcal{I})$ and
- (*ii*) $\mathcal{I} \lim_{n} t_{nk} = \lim_{i} t_{n_i k} = 0, \ (k \in \mathbb{N});$
- (iii) $\mathcal{I} \lim_{n \to k} t_{nk} = \lim_{i \to k} \sum_{k \to k} t_{n_i k} = 1.$

We need the following lemma which is an \mathcal{I} -analogue of the results of Simons [37] (Corollary 12, Theorem 11).

Lemma 5. Let \mathcal{I} be an admissible ideal satisfying (\mathcal{AP}) condition. If $||\mathcal{T}|| < \infty$ and there exists $\mathcal{N} = \{n_i\}$ such that $\mathcal{N} \in \mathcal{F}(\mathcal{I})$ and $\mathcal{I} - \limsup_n t_{nk} = \limsup_n t_{nk} = \lim \sup_i t_{n_ik} = 0$, then there exists $y \in l_\infty$ such that $||y|| \le 1$ and

$$\limsup_{i} \sum_{k} t_{n_i k} y_k = \limsup_{i} \sum_{k} |t_{n_i k}|,$$

i.e.

$$\mathcal{I} - \limsup_{n} \sum_{k} t_{nk} y_k = \mathcal{I} - \limsup_{n} \sum_{k} |t_{nk}|.$$

To prove our theorems we need first to characterize the matrix class $(\mathcal{I}_c \cap l_\infty, \mathcal{I}_c \cap l_\infty)_{reg}$.

Theorem 1. Let \mathcal{I} be an admissible ideal satisfying (\mathcal{AP}) condition. Then $\mathcal{T} \in (\mathcal{I}_c \cap l_\infty, \mathcal{I}_c \cap l_\infty)_{reg}$ if and only if

(1.1)
$$\mathcal{T} \in (c, \mathcal{I}_c \cap l_\infty)_{reg};$$

(1.2) there exists $\mathcal{N} = \{n_i\}$ such that $\mathcal{N} \in \mathcal{F}(\mathcal{I})$ and $\lim_i \sum_{k \in \mathcal{U}} |t_{n_i k}| = \mathcal{I} - \lim_n \sum_{k \in \mathcal{U}} |t_{nk}| = 0$, for every $\mathcal{U} \in \mathcal{I}$.

Proof. Let $\mathcal{T} \in (\mathcal{I}_c \cap l_\infty, \mathcal{I}_c \cap l_\infty)_{reg}$ and $\mathcal{I} - \lim \eta = \mathcal{I} - \lim \mathcal{T}\eta = \xi$, say. Since $c \subset \mathcal{I}_c$, we have $\mathcal{T} \in (c, \mathcal{I}_c \cap l_\infty)_{reg}$.

Let $\mathcal{U} \subseteq \mathbb{N}$ be such that $\emptyset \neq \mathcal{U} \in \mathcal{I}$ and let $\eta \in l_{\infty}$ be defined by

$$\eta_k = \begin{cases} 1 & \text{, if } k \in \mathcal{U}, \\ 0 & \text{, otherwise} \end{cases}$$

Then $\mathcal{I} - \lim \eta = 0$ and so $\mathcal{I} - \lim \mathcal{T} \eta = 0$. Hence \mathcal{T} satisfies the conditions in Lemma 5 and so we have $\mathcal{I} - \lim_{k \in \mathcal{U}} |t_{nk}| = 0$, whenever $\mathcal{U} \in \mathcal{I}$.

Conversely. Suppose that (1.1) and (1.2) hold and $\eta \in \mathcal{I}_c \cap l_\infty$ with $\mathcal{I} - \lim \eta = \xi$. Let $\mathcal{U} = \{k : |\eta_k - \xi| \ge \varepsilon\} \in \mathcal{I}$ for $\varepsilon > 0$. We have

$$\mathcal{I} - \lim \mathcal{T}\eta = \mathcal{I} - \lim \left(\sum_{k} t_{nk} \left(\eta_k - \xi \right) + \xi \sum_{k} t_{nk} \right).$$

Using Lemma 4, we have

.

$$\mathcal{I} - \lim \mathcal{T}\eta = \mathcal{I} - \lim_{n} \sum_{k} t_{nk} \left(\eta_k - \xi \right) + \xi.$$
(1)

Since

$$\left|\sum_{k} t_{nk} \left(\eta_{k} - \xi\right)\right| = \left|\sum_{k \in \mathcal{U}} t_{nk} \left(\eta_{k} - \xi\right) + \sum_{k \notin \mathcal{U}} t_{nk} \left(\eta_{k} - \xi\right)\right|$$
$$\leq \left\|\eta_{k} - \xi\right\| \sum_{k \in \mathcal{U}} \left|t_{nk}\right| + \epsilon \left\|\mathcal{T}\right\|.$$

Since $\|\mathcal{T}\| < \infty$ by condition (1.1), applying condition (1.2), we have

$$\mathcal{I} - \lim_{n} \sum_{k} t_{nk} \left(\eta_k - \xi \right) = 0.$$

Hence (1) implies that

$$\mathcal{I} - \lim \mathcal{T}\eta = \xi = \mathcal{I} - \lim \eta,$$

i.e. $\mathcal{T} \in (\mathcal{I}_c \cap l_\infty, \mathcal{I}_c \cap l_\infty)_{req}$, which completes the proof.

Theorem 2. Let \mathcal{I} be an admissible ideal that satisfies (\mathcal{AP}) condition. If $||\mathcal{T}|| < \infty$, then for every $\eta \in l_{\infty}$

$$\mathcal{I} - core\left\{\mathcal{T}\eta\right\} \subseteq \mathcal{K} - core\left\{\eta\right\} \tag{2}$$

if and only if the following conditions hold:

$$(2.1) \ \mathcal{T} \in (c, \mathcal{I}_c \cap l_\infty)_{reg};$$

(2.2) $\mathcal{I} - \lim_{n \to \infty} \sum_{k \in \mathcal{D}} |t_{nk}| = 1$, whenever $\mathcal{D} \in \mathcal{F}(\mathcal{I})$ and $\mathbb{N} \setminus \mathcal{D}$ is finite.

Proof. Suppose that (2) holds and $\eta \in c$ is such that $\lim_k \eta_k = \xi$. Then

$$\mathcal{I} - core\{\mathcal{T}\eta\} \subseteq \mathcal{K} - core\{\eta\} = \{\xi\}.$$

Since $\mathcal{T}\eta \in l_{\infty}$ for $\eta \in l_{\infty}$, from Lemma 2 (iii), we have $\mathcal{T}\eta$ has at least one \mathcal{I} -cluster point. From Remark 4 (c), we have

$$\emptyset \neq \mathcal{I}(\Gamma_{\mathcal{T}\eta}) \subseteq \mathcal{I} - core\{\mathcal{T}\eta\} \subseteq \mathcal{K} - core\{\eta\} = \{\xi\}.$$

Hence from Remark 3, $\mathcal{T}\eta$ is \mathcal{I} -convergent to ξ , i.e. $\mathcal{T} \in (c, \mathcal{I}_c \cap l_\infty)_{reg}$. Let $\mathcal{D} \in \mathcal{F}(\mathcal{I})$ be such that $\mathbb{N} \setminus \mathcal{D}$ is finite and define the sequence $\eta = (\eta_k)$ by

$$\eta_k = \begin{cases} 1 & \text{, if } k \in \mathcal{D}, \\ 0 & \text{, otherwise.} \end{cases}$$

Then $\lim \eta_k = 1$ and hence we have

$$\emptyset \neq \mathcal{I} - core\{\mathcal{T}\eta\} \subseteq \mathcal{K} - core\{\eta\} = \{1\}.$$

Therefore, 1 is the only cluster point of $\mathcal{T}\eta$. Hence by Remark 3, we have $\mathcal{I} - \lim \mathcal{T}\eta = 1$. Since \mathcal{I} is admissible ideal satisfying (\mathcal{AP}) condition, by Lemma 5, we have

$$\mathcal{I} - \lim_{n} \sum_{k \in \mathcal{D}} |t_{nk}| = 1$$
, whenever $\mathcal{D} \in \mathcal{F}(\mathcal{I})$ and $\mathbb{N} \setminus \mathcal{D}$ is finite.

Conversely, let conditions (2.1) and (2.2) hold and $w \in \mathcal{I} - core\{\mathcal{T}\eta\}$. Then for any $z \in \mathbb{C}$, we have

$$|w-z| \leq \mathcal{I} - \limsup_{n} |z - \mathcal{T}_{n}(\eta)|$$

$$= \mathcal{I} - \limsup_{n} \mid z - \sum_{k} t_{nk} \eta_k \mid$$

O.H. Edely, M. Mursaleen

$$\leq \mathcal{I} - \limsup_{n} |\sum_{k} t_{nk}(z - \eta_k)| + \mathcal{I} - \limsup_{n} |z|| 1 - \sum_{k} t_{nk} |.$$

Using condition (2.2), we have

$$|w-z| \leq \mathcal{I} - \limsup_{n} \left| \sum_{k} t_{nk} (z-\eta_k) \right|.$$
 (3)

Let $\alpha = \limsup_k |z - \eta_k|$ and $\mathcal{U} = \{k : |z - \eta_k| > \alpha + \varepsilon\}$ for $\varepsilon > 0$. Then \mathcal{U} is a finite set and hence $\mathcal{U} \in \mathcal{I}$, so we have

$$\left|\sum_{k} t_{nk}(z-\eta_{k})\right| \leq \sup_{k} |z-\eta_{k}| \sum_{k \in \mathcal{U}} |t_{nk}| + (\alpha+\varepsilon) \sum_{k \notin \mathcal{U}} |t_{nk}|.$$

Therefore, by conditions (2.1), (2.2) and Remark 5 (a), we obtain

$$\mathcal{I} - \limsup_{n} |\sum_{k} t_{nk}(z - \eta_k)| \le \alpha + \varepsilon.$$

Hence (3) implies that

$$\mid w - z \mid \leq \alpha + \varepsilon,$$

and since ε is arbitrary,

$$|w-z| \le \alpha = \limsup_{k} |z-\eta_k|,$$

i.e. $w \in K_{\eta}(z)$. Hence $w \in \mathcal{K} - core\{\eta\}$, and so

$$\mathcal{I} - core\{\mathcal{T}\eta\} \subseteq \mathcal{K} - core\{\eta\}.$$

This completes the proof of the theorem. \blacktriangleleft

Remark 5. (a) If $\mathcal{I} - \lim_{n \to \infty} \sum_{k \in \mathcal{D}} |t_{nk}| = 1$ whenever $\mathbb{N} \setminus \mathcal{D}$ is finite, then

$$\mathcal{I} - \lim_{n} \sum_{k \in \mathcal{U}} |t_{nk}| = 0$$
, for any finite set \mathcal{U} .

(b) We can not replace condition (2.2) by

$$\mathcal{I} - \lim_{n} \sum_{k \in \mathcal{D}} |t_{nk}| = 1, \text{ whenever } \mathcal{D} \in \mathcal{F}(\mathcal{I}).$$
(4)

Consider the following example.

Example 1. Let \mathcal{I} be an admissible ideal that satisfies (\mathcal{AP}) condition and let $\mathcal{H} = \{h_i\}_{i=1}^{\infty}$ be any infinite set in \mathcal{I} . Define $\mathcal{T} = (t_{nk})$ as

$$t_{nk} = \begin{cases} 1 & ,n \notin \mathcal{H}, \ k = \min\{h_i\} > n, \\ 0 & , otherwise. \end{cases}$$

Then

$$\sum_{k} t_{nk} = \begin{cases} 1 & , n \notin \mathcal{H}, \\ 0 & , otherwise. \end{cases}$$

It is easy to see that \mathcal{T} is not regular but $\mathcal{T} \in (c, \mathcal{I}_c \cap \ell_{\infty})_{reg}$. Further, for any set $\mathcal{D} \in \mathcal{F}(\mathcal{I})$ such that $\mathbb{N} \setminus \mathcal{D}$ is finite we have

$$\mathcal{I} - \lim_{n} \sum_{k \in \mathcal{D}} |t_{nk}| = 1.$$

So for any $\eta \in l_{\infty}$, we have

$$\mathcal{I} - core\{\mathcal{T}\eta\} \subseteq \mathcal{K} - core\{\eta\}.$$

Now, let $\mathcal{M} = \mathbb{N} \setminus \mathcal{H}$. Then $\mathcal{M} \in \mathcal{F}(\mathcal{I})$ and we have

$$\sum_{k \in \mathcal{M}} t_{nk} = 0, \ \forall \ n$$

Hence

$$\mathcal{I} - \lim_{n} \sum_{k \in \mathcal{M}} |t_{nk}| = 0.$$

Further, for any $\eta \in l_{\infty}$, e.g. $\eta = (1, 1, \dots)$, we have $\mathcal{K} - core\{\eta\} = \{1\}$ and

$$\sum_{k} t_{nk} \eta_k = \begin{cases} 1 & , n \notin \mathcal{H}, \\ 0 & , otherwise. \end{cases}$$

Hence we have $\mathcal{I} - \operatorname{core}\{\mathcal{T}\eta\} = \mathcal{K} - \operatorname{core}\{\eta\} = \{1\}.$ Therefore, we see that (2.2) holds but (4) does not hold.

Theorem 3. Let \mathcal{I} be an admissible ideal that satisfies (\mathcal{AP}) condition. If $||\mathcal{T}|| < \infty$, then for every $\eta \in l_{\infty}$

$$\mathcal{I} - core \left\{ \mathcal{T}\eta \right\} \subseteq \mathcal{I} - core \left\{ \eta \right\}$$
(5)

if and only if the following conditions hold:

(3.1) $\mathcal{T} \in (\mathcal{I}_c \cap \ell_\infty, \mathcal{I}_c \cap \ell_\infty)_{reg};$

(3.2) $\mathcal{I} - \lim_{n \to \infty} \sum_{k \in \mathcal{D}} |t_{nk}| = 1$, whenever $\mathcal{D} \in \mathcal{F}(\mathcal{I})$.

Proof. Suppose that (5) holds and let $\eta \in \mathcal{I}_c \cap \ell_\infty$ be such that $\mathcal{I} - \lim \eta = \xi$. Then

$$I - core \{\mathcal{T}\eta\} \subseteq \mathcal{I} - core \{\eta\} = \{\xi\}.$$

Since $\|\mathcal{T}\| < \infty$ implies $\mathcal{T}\eta \in \ell_{\infty}$ for $\eta \in \ell_{\infty}$, from Remark 4 (a), we have $\mathcal{I} - core \{\mathcal{T}\eta\} \neq \emptyset$. Hence $\mathcal{I} - core \{\mathcal{T}\eta\} = \{\xi\}$, i.e. $\mathcal{T} \in (\mathcal{I}_c \cap \ell_{\infty}, \mathcal{I}_c \cap \ell_{\infty})_{reg}$.

Let $\mathcal{D} \subseteq \mathbb{N}$ be such that $\mathcal{D} \in \mathcal{F}(\mathcal{I})$ and let $\chi_{\mathcal{D}}$ be the characteristic function of \mathcal{D} defined as

$$\chi_{\mathcal{D}}(d) = \begin{cases} 1 & , \text{ if } d \in \mathcal{D} \\ 0 & , \text{ otherwise.} \end{cases}$$

Then

$$\mathcal{I} - core\{\chi_{\mathcal{D}}\} = \{1\}.$$

Since $||\mathcal{T}|| < \infty$ implies $\mathcal{T}\chi_{\mathcal{D}} \in \ell_{\infty}$ for $\chi_{\mathcal{D}} \in \ell_{\infty}$, from Lemma 2 (iii) it follows that $\mathcal{T}\chi_{\mathcal{D}}$ has at least one \mathcal{I} -cluster point. Therefore, $\mathcal{I} - core\{\mathcal{T}\chi_{\mathcal{D}}\} \neq \emptyset$. Also $\mathcal{I} - core\{\mathcal{T}\chi_{\mathcal{D}}\} = \{1\}$, since $\mathcal{I} - core\{\mathcal{T}\chi_{\mathcal{D}}\} \subseteq \mathcal{I} - core\{\chi_{\mathcal{D}}\} = \{1\}$, hence $\mathcal{I} - \lim \mathcal{T}\chi_{\mathcal{D}} = 1$. Using Lemma 5, we have

$$\mathcal{I} - \lim_{n} \sum_{k \in \mathcal{D}} |t_{nk}| = 1$$
, whenever $\mathcal{D} \in \mathcal{F}(\mathcal{I})$.

Conversely. Let $w \in \mathcal{I} - core\{\mathcal{T}\eta\}$. We proceed along the same lines as in Theorem 2. Then we arrive at

$$|w-z| \leq \alpha$$
, where $\alpha = \mathcal{I} - \limsup_{k} |z-\eta_k|$, for any $z \in \mathbb{C}$,

by using conditions (3.1), (3.2) and Remark 6. So $w \in B_{\eta}(z)$. Hence $w \in \mathcal{I} - core\{\eta\}$, i.e.

$$\mathcal{I} - core\{\mathcal{T}\eta\} \subseteq I - core\{\eta\}.$$

This completes the proof. \blacktriangleleft

Remark 6. If $\mathcal{I} - \lim_{n \to \infty} \sum_{k \in \mathcal{D}} |t_{nk}| = 1$ for any $\mathcal{D} \in \mathcal{F}(\mathcal{I})$, then

$$\mathcal{I} - \limsup_{n} \sum_{k \in \mathcal{U}} |t_{nk}| = 0, \ whenever \ \mathcal{U} \in I \ .$$

References

- M. Altınok , M. Küçükaslan, A-Statistical Supremum-Infimum and A-Statistical Convergence, Azerbaijan Journal of Mathematics, 4(2), 2014, 31-42.
- B.T. Bilalov, T.Y. Nazarova, Statistical convergence of functional sequences, Rocky Mountain J. Math., 45(5), 2015, 1413-1423.
- [3] B. Bilalov, T. Nazarova, On statistical convergence in metric spaces, Journal of Mathematics Research, 7(1), 2015, 37–43.
- [4] B.T. Bilalov, T.Y. Nazarova, On statistical type convergence in uniform spaces, Bull. Iranian Math. Soc., 42(4), 2016, 975–986.
- [5] R.G. Cook, Infinite Matrices and Sequence Spaces, Macmillan, 1950.
- [6] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32, 1989, 194–198.
- [7] J. Connor, Two valued measures and summability, Analysis, 10(4), 1990, 373-386.
- [8] K. Demirci, *I-limit superior and limit inferior*, Math. Commun, 6(2), 2001, 165–172.
- [9] K. Demirci, S. Yardimci, σ -core and *I*-core of bounded sequences, J. Math. Anal. Appl., 290(2), (2004), 414-422.
- [10] O.H.H. Edely, B-statistically A-summability, Thai Jour. Math., 11(1), 2013, 1–10.
- [11] O.H.H. Edely, On some properties of A^I summability and A^{I*} summability, Azerbaijan Jour. Math., 11(1), 2021, 189-200.
- [12] O.H.H. Edely, M. Mursaleen, On statistical A-Cauchy and statistical Asummability via ideal, J. Inequal. Appl., 2021(34), 2021, 1-11.
- [13] H. Fast, Sur la convergence statistique, Colloq. Math., 2, 1951, 241–244.
- [14] A.R. Freedman, J.J. Sember, Densities and summability, Pacific Jour. Math., 95(2), 1981, 293-305.
- [15] J.A. Fridy, On statistical convergence, Analysis, 5, 1985, 301–313.

- [16] J.A. Fridy, H.I. Miller, A matrix characterization of statistical convergence, Analysis, 11(1), 1991, 59–66.
- [17] J.A. Fridy, C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125(12), 1997, 3625–3631.
- [18] J.A. Fridy, C. Orhan, *Statistical core theorems*, J. Math. Anal. Appl., 208(2), 1997, 520-527.
- [19] D.N. Georgioua, S.D. Iliadisb, A.C. Megaritis, G.A. Prinos, *Ideal-convergence classes*, Topology Appl., 222, 2017, 217–226.
- [20] V.A. Khan, B. Hazarika, I.A. Khan, U. Tuba, *I-deferred strongly Cesàro summable and μ-deferred I-statistically convergent sequence spaces*, Ricerche mat., 2021. https://doi.org/10.1007/s11587-021-00619-8.
- [21] K. Knopp, Zur theorie der limitierungsverfahren." Mathematische Zeitschrift (Erste Mitteilung), Math. Z. 31, 1930, 115-127.
- [22] E. Kolk, Matrix transformations related to I-convergent sequences, Acta et Commentationes Universitatis Tartuensis de Mathematica, 22(2), 2018, 191-200.
- [23] P. Kostyrko, T. Šalát, W. Wilczyńki, *I-convergence*, Real Anal. Exchange, 26(2) (2000/2001), 669–686.
- [24] P. Kostyrko, M. Macaj, T. Šalát, M. Sleziak, *I-Convergence and External I-limits points*, Math. Slovaca, **55(4)**, 2005, 443–464.
- [25] V. Kumar, *I-core of double sequences*, Int. J. Contemp. Math. Sci., 2(23), 2007, 1137-1145.
- [26] B.K. Lahiri, P. Das, Further results on I-limit superior and limit inferior, Math. Commun., 8(2), 2003, 151–156.
- [27] J. Li, J.A. Fridy, Matrix transformations of statistical cores of complex sequences, Analysis, 20(1), 2000, 15-34.
- [28] I.J. Maddox, Some analogues of Knopp's core theorem, Internat. J. Math. Math. Sci., 2, 1979, 605-614.
- [29] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61(6), 2011, 933–940.

- [30] M. Mursaleen, O.H.H. Edely, On some statistical core theorems, Analysis, 22(3), 2002, 265-276.
- [31] M. Mursaleen, O.H.H. Edely, A. Mukheimer, Statistically σ-multiplicative matrices and some inequalities, Mathematica Slovaca, 54(3), 2004, 281-289.
- [32] M. Mursaleen, S.A. Mohiuddine, O.H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59(2), 2010, 603–611.
- [33] M. Mursaleen, S. Debnath, D. Rakshit, *I-statistical limit superior and I-statistical limit inferior*, Filomat, **31(7)**, 2017, 2103–2108.
- [34] T. Salát, On statistically convergent sequences of real numbers, Math. Slovaca, 30, 1980, 139–150.
- [35] E. Savas, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24(6), 2011, 826–830.
- [36] A.A. Shcherbakov, Kernels of sequences of complex numbers and their regular transformations, Math. Notes, 22, 1977, 948-953.
- [37] S. Simons, Banach limits, infinite matrices and sublinear functionals, J. Math. Anal. Appl., 26(3), 1969, 640-655.

Osama H. H. Edely Department of Mathematics, Tafila Technical University, P.O.Box 179, Tafila (66110) - Jordan E-mail: osamaedely@yahoo.com

M. Mursaleen

Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India E-mail: mursaleenm@gmail.com

Received 05 April 2022 Accepted 10 May 2022