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On Bihypernomials Related to Balancing
and Chebyshev Polynomials
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Abstract. In this paper, we introduce and study balancing and Lucas-balancing bihy-
pernomials as a generalization of bihyperbolic balancing and Lucas-balancing numbers.
Moreover, we investigate properties of some types of Chebyshev bihypernomials and
relations between them.
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1. Introduction and preliminary results

Let n ≥ 0 be an integer. The Chebyshev polynomials of the first kind are
defined by

Tn(x) = cos(n arccosx), x ∈ [−1, 1]

=
1

2

((
x+

√
x2 − 1

)n
+
(
x−

√
x2 − 1

)n)
, x ∈ C.

The Chebyshev polynomials of the second kind are defined by

Un(x) =
sin ((n+ 1) arccosx)

sin(arccosx)
, x ∈ [−1, 1]

=
1

2

(
x+
√
x2 − 1

)n+1
−
(
x−
√
x2 − 1

)n+1

√
x2 − 1

, x ∈ C, |x| 6= 1.

Chebyshev polynomials of the first and second kind may be also defined by re-
currences. For n ≥ 2 we have

Tn(x) = 2xTn−1(x)− Tn−2(x)
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with
T0(x) = 1, T1(x) = x

and
Un(x) = 2xUn−1(x)− Un−2(x)

with
U0(x) = 1, U1(x) = 2x.

More details about Chebyshev polynomials can be found for example in [4, 14, 19].
Two other families of polynomials

Vn =
cos
(
(n+ 1

2) arccosx
)

cos(12 arccosx)

and

Wn =
sin
(
(n+ 1

2) arccosx
)

sin(12 arccosx)

are named (see [10, 14]) as the third- and fourth-kind Chebyshev polynomials,
respectively. Moreover, for n ≥ 2 we have

Vn(x) = 2xVn−1(x)− Vn−2(x)

with
V0(x) = 1, V1(x) = 2x− 1

and
Wn(x) = 2xWn−1(x)−Wn−2(x)

with
W0(x) = 1, W1(x) = 2x+ 1.

As we can see, polynomials Vn(x) and Wn(x) share the same recurrence relation
as Tn(x) and Un(x), and they differ only in the initial condition for n = 1.

In the literature, we can find many types of polynomials related to Chebyshev
polynomials. In [11, 12], Li studied properties of Chebyshev polynomials and
relationships between Chebyshev polynomials, Fibonacci polynomials, and their
rth derivatives. The Pell and Pell-Lucas polynomials are modified Chebyshev
polynomials with the complex variable, see [8]. Balancing and Lucas-balancing
polynomials are ,,rescaled” Chebyshev polynomials, see [9]. In this paper, we
will use Chebyshev, balancing and Lucas-balancing polynomials in the theory of
bihypernomials.

The term bihypernomial was used for the first time in [21]. The authors intro-
duced and studied the Fibonacci and Lucas bihypernomials as a generalization
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of bihyperbolic numbers. In [22], we can find properties of Pell and Pell-Lucas
bihypernomials. Bihyperbolic numbers of the Fibonacci type (among others Fi-
bonacci, Pell and Pell-Lucas bihyperbolic numbers) were examined in [6, 7]. The
combinatorial properties of bihyperbolic balancing and Lucas-balancing numbers
can be found in [5]. We will first recall the necessary definitions related to the
bihyperbolic numbers, balancing numbers and polynomials and then define new
bihypernomials.

Let H2 be the set of bihyperbolic numbers ζ of the form

ζ = x0 + x1j1 + x2j2 + x3j3,

where x0, x1, x2, x3 ∈ R and j1, j2, j3 /∈ R are operators such that

j21 = j22 = j23 = 1, j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1. (1)

The multiplication of bihyperbolic numbers can be performed analogously as
the multiplication of algebraic expressions. The addition and the subtraction of
bihyperbolic numbers is done by adding and subtracting corresponding terms and
hence their coefficients. Furthermore, (H2,+, ·) is a commutative ring. For the
algebraic properties of bihyperbolic numbers, see [3].

The sequence of balancing numbers, denoted by {Bn}, was introduced by
Behera and Panda in [2]. A balancing number n with balancer r is the solution
of the Diophantine equation 1+2+ · · ·+(n−1) = (n+1)+(n+2)+ · · ·+(n+r).
In [2], it was proved that the balancing numbers satisfy the following recurrence
relation:

Bn = 6Bn−1 −Bn−2 for n ≥ 2 (2)

with B0 = 0, B1 = 1. The sequence of balancing numbers is also given by Binet
formula

Bn =
rn1 − rn2
r1 − r2

,

where
r1 = 3 + 2

√
2, r2 = 3− 2

√
2 (3)

are the roots of the characteristic equation r2 − 6r + 1 = 0, associated with the
recurrence relation (2). In [15], the author introduced Lucas-balancing numbers,
defined as follows: if Bn is a balancing number, then the number Cn for which
C2
n = 8B2

n + 1 is called a Lucas-balancing number. The sequence {Cn} of Lucas-
balancing numbers is also defined by the recurrence relation

Cn = 6Cn−1 − Cn−2 for n ≥ 2

with C0 = 1, C1 = 3.
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The Binet type formula for the Lucas-balancing numbers has the following
form:

Cn =
1

2
(rn1 + rn2 ) ,

where r1, r2 are given by (3).

For nonnegative integer n, the nth bihyperbolic balancing number BhBn and
the nth bihyperbolic Lucas-balancing number BhCn were defined as

BhBn = Bn +Bn+1j1 +Bn+2j2 +Bn+3j3,

BhCn = Cn + Cn+1j1 + Cn+2j2 + Cn+3j3,

where Bn is the nth balancing number, Cn is the nth Lucas-balancing number
and j1, j2, j3 are units which satisfy (1), see [5].

In the literature we can find many generalizations of balancing numbers, see
[1, 13, 16, 17]. One of them is extension of numbers to polynomials, more pre-
cisely, defining for nonnegative integer n and complex x sequences of balancing
polynomials Bn(x) (see [20]) and Lucas-balancing polynomials Cn(x) (see [18]).

Balancing polynomials are defined by the recurrence

Bn(x) = 6xBn−1(x)−Bn−2(x) for n ≥ 2

with the initial terms B0(x) = 0, B1(x) = 1.

Lucas-balancing polynomials are defined by

Cn(x) = 6xCn−1(x)− Cn−2(x) for n ≥ 2

with C0(x) = 1, C1(x) = 3x.
For x = 1 we obtain Bn(x) = Bn, Cn(x) = Cn.

Binet type formulas for the balancing polynomials and Lucas-balancing poly-
nomials have the following forms:

Bn(x) =
λn(x)− λ−n(x)

λ(x)− λ−1(x)
, (4)

Cn(x) =
1

2

(
λn(x) + λ−n(x)

)
,

where λ(x) = 3x+
√

9x2 − 1 and λ−1(x) = 3x−
√

9x2 − 1.

Table 1 includes initial terms of balancing numbers, Lucas-balancing numbers,
balancing type polynomials and Chebyshev type polynomials for n = 0, 1, 2, 3, 4.
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Table 1: The balancing type numbers, balancing type polynomials and Chebyshev type polynomials.

n 0 1 2 3 4

Bn 0 1 6 35 204

Cn 1 3 17 99 577

Bn(x) 0 1 6x 36x2 − 1 216x3 − 12x

Cn(x) 1 3x 18x2 − 1 108x3 − 9x 648x4 − 72x2 + 1

Tn(x) 1 x 2x2 − 1 4x3 − 3x 8x4 − 8x2 + 1

Un(x) 1 2x 4x2 − 1 8x3 − 4x 16x4 − 12x2 + 1

Vn(x) 1 2x− 1 4x2 − 2x− 1 8x3 − 4x2 − 4x + 1 16x4 − 8x3 − 12x2 + 4x + 1

Wn(x) 1 2x + 1 4x2 + 2x− 1 8x3 + 4x2 − 4x− 1 16x4 + 8x3 − 12x2 − 4x + 1

2. Bihypernomials of the balancing type

For nonnegative integer n and complex x, the nth balancing bihypernomial
BhBn(x) and nth Lucas-balancing bihypernomial BhCn(x) are defined as

BhBn(x) = Bn(x) +Bn+1(x)j1 +Bn+2(x)j2 +Bn+3(x)j3, (5)

BhCn(x) = Cn(x) + Cn+1(x)j1 + Cn+2(x)j2 + Cn+3(x)j3,

where Bn(x) is the nth balancing polynomial, Cn(x) is the nth Lucas-balancing
polynomial and j1, j2, j3 are units which satisfy (1).

For x = 1 we obtain BhBn(1) = BhBn and BhCn(1) = BhCn.

Theorem 1. For nonnegative integer n and complex x, we have

BhBn(x) = 6xBhBn−1(x)−BhBn−2(x) for n ≥ 2 (6)

with BhB0(x) = j1 + 6xj2 + (36x2 − 1)j3
and BhB1(x) = 1 + 6xj1 + (36x2 − 1)j2 + (216x3 − 12x)j3.

Proof. For n = 2 we have

BhB2(x) = 6xBhB1(x)−BhB0(x)

= 6x(1 + 6xj1 + (36x2 − 1)j2 + (216x3 − 12x)j3)

− j1 − 6xj2 − (36x2 − 1)j3

= 6x+ (36x2 − 1)j1 + (216x3 − 12x)j2 + (1296x4 − 108x2 + 1)j3

= B2(x) +B3(x)j1 +B4(x)j2 +B5(x)j3.
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Let n ≥ 3. Then by the definition of balancing polynomials we have

BhBn(x) = Bn(x) +Bn+1(x)j1 +Bn+2(x)j2 +Bn+3(x)j3

= (6xBn−1(x)−Bn−2(x)) + (6xBn(x)−Bn−1(x))j1

+ (6xBn+1(x)−Bn(x))j2 + (6xBn+2(x)−Bn+1(x))j3

= 6x(Bn−1(x) +Bn(x)j1 +Bn+1(x)j2 +Bn+2(x)j3)

− (Bn−2(x) +Bn−1(x)j1 +Bn(x)j2 +Bn+1(x)j3)

= 6xBHn−1(x)−BHn−2(x),

which ends the proof. J

In the same way we can easily prove the next theorem.

Theorem 2. For nonnegative integer n and complex x, we have

BhCn(x) = 6xBhCn−1(x)−BhCn−2(x) for n ≥ 2

with BhC0(x) = 1 + 3xj1 + (18x2 − 1)j2 + (108x3 − 9x)j3
and BhC1(x) = 3x+ (18x2 − 1)j1 + (108x3 − 9x)j2 + (648x4 − 72x2 + 1)j3.

Now, we will give Binet type formulas for balancing bihypernomials and
Lucas-balancing bihypernomials.

Theorem 3. For nonnegative integer n and complex x, |x| 6= 1
3 , we have

BhBn(x) =
λn(x)

λ(x)− γ(x)

(
1 + λ(x)j1 + λ2(x)j2 + λ3(x)j3

)
− γn(x)

λ(x)− γ(x)

(
1 + γ(x)j1 + γ2(x)j2 + γ3(x)j3

)
,

(7)

where λ(x) = 3x+
√

9x2 − 1 and γ(x) = λ−1(x) = 3x−
√

9x2 − 1.

Proof. Using (5) and (4), we have

BhBn(x) = Bn(x) +Bn+1(x)j1 +Bn+2(x)j2 +Bn+3(x)j3

=
λn(x)− γn(x)

λ(x)− γ(x)
+
λn+1(x)− γn+1(x)

λ(x)− γ(x)
j1

+
λn+2(x)− γn+2(x)

λ(x)− γ(x)
j2 +

λn+3(x)− γn+3(x)

λ(x)− γ(x)
j3

=
λn(x)

λ(x)− γ(x)
(1 + λ(x)j1 + λ2(x)j2 + λ3(x)j3)

− γn(x)

λ(x)− γ(x)
(1 + γ(x)j1 + γ2(x)j2 + γ3(x)j3),

which ends the proof. J
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Theorem 4. For nonnegative integer n and complex x, we have

BhCn(x) =
1

2

[
λn(x)

(
1 + λ(x)j1 + λ2(x)j2 + λ3(x)j3

)
+γn(x)

(
1 + γ(x)j1 + γ2(x)j2 + γ3(x)j3

)]
,

(8)

where λ(x) = 3x+
√

9x2 − 1 and γ(x) = λ−1(x) = 3x−
√

9x2 − 1.

Using Binet type formulas for balancing bihypernomials and Lucas-balancing
bihypernomials we will obtain general bilinear index-reduction formulas for these
bihypernomials.

For simplicity of notation let

λ̂(x) = 1 + λ(x)j1 + λ2(x)j2 + λ3(x)j3, (9)

γ̂(x) = 1 + γ(x)j1 + γ2(x)j2 + γ3(x)j3. (10)

Thus, we can write (7) and (8) as

BhBn(x) =
λn(x)λ̂(x)− γn(x)γ̂(x)

2
√

9x2 − 1
, (11)

BhCn(x) =
λn(x)λ̂(x) + γn(x)γ̂(x)

2
, (12)

respectively.

Theorem 5. (general bilinear index-reduction formula for balancing bihyper-
nomials) Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a+ b = c+ d. Then
for complex x, |x| 6= 1

3 , we have

BhBa(x) ·BhBb(x)−BhBc(x) ·BhBd(x)

=
λ̂(x)γ̂(x)

36x2 − 4

(
λc(x)γd(x)− λa(x)γb(x) + γc(x)λd(x)− γa(x)λb(x)

)
,

where λ̂(x), γ̂(x) are given by (9), (10), respectively.

Proof. By formula (11) we get

BhBa(x) ·BhBb(x)−BhBc(x) ·BhBd(x)

=
1

36x2 − 4

(
λa(x)λ̂(x)− γa(x)γ̂(x)

)(
λb(x)λ̂(x)− γb(x)γ̂(x)

)
·
(
λc(x)λ̂(x)− γc(x)γ̂(x)

)(
λd(x)λ̂(x)− γd(x)γ̂(x)

)
=

1

36x2 − 4

[
λa+b(x)(λ̂(x))2 − λa(x)γb(x)λ̂(x)γ̂(x)− γa(x)λb(x)γ̂(x)λ̂(x)

+ γa+b(x)(γ̂(x))2 − λc+d(x)(λ̂(x))2 + λc(x)γd(x)λ̂(x)γ̂(x)

+γc(x)λd(x)γ̂(x)λ̂(x)− γc+d(x)(γ̂(x))2
]
.
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Since a+ b = c+ d and λ̂(x) · γ̂(x) = γ̂(x) · λ̂(x), we get

BhBa(x) ·BhBb(x)−BhBc(x) ·BhBd(x)

=
λ̂(x)γ̂(x)

36x2 − 4

(
λc(x)γd(x)− λa(x)γb(x) + γc(x)λd(x)− γa(x)λb(x)

)
.

J

Theorem 6. (general bilinear index-reduction formula for Lucas-balancing bihy-
pernomials) Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a + b = c + d.
Then

BhCa(x) ·BhCb(x)−BhCc(x) ·BhCd(x)

=
λ̂(x)γ̂(x)

4

(
λa(x)γb(x)− λc(x)γd(x) + γa(x)λb(x)− γc(x)λd(x)

)
,

where λ̂(x), γ̂(x) are given by (9), (10), respectively.

Proof. By (12) we get

BhCa(x) ·BhCb(x)−BhCc(x) ·BhCd(x)

=
1

4

[
λa+b(x)(λ̂(x))2 + λa(x)γb(x)λ̂(x)γ̂(x) + λb(x)γa(x)γ̂(x)λ̂(x)

+ γa+b(x)(γ̂(x))2 − λc+d(x)(λ̂(x))2 − λc(x)γd(x)λ̂(x)γ̂(x)

−λd(x)γc(x)γ̂(x)λ̂(x)− γc+d(x)(γ̂(x))2
]
.

Since a+ b = c+ d and λ̂(x) · γ̂(x) = γ̂(x) · λ̂(x), we get the result. J

For special values of a, b, c, d, by Theorems 5-6, we can obtain some identities
for balancing and Lucas-balancing bihypernomials:

• d’Ocagne type identity – for a = n, b = m+ 1, c = n+ 1, d = m,

• Vajda type identity – for a = m+ r, b = n− r, c = m, d = n,

• first Halton type identity – for a = m+ r, b = n, c = r, d = m+ n,

• second Halton type identity – for a = n+k, b = n−k, c = n+ s, d = n− s,

• Catalan type identity – for a = n+ r, b = n− r, c = d = n,

• Cassini type identity – for a = n+ 1, b = n− 1, c = d = n.
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Putting x = 1 we can obtain general bilinear index-reduction formulas and
d’Ocagne, Vajda, Halton, Catalan, Cassini type identities for balancing and
Lucas-balancing bihyperbolic numbers.

Now, we will give the generating functions for balancing and Lucas-balancing
bihypernomials.

Theorem 7. The generating function for balancing bihypernomial sequence
{BhBn(x)} is

G(t) =
BhB0(x) + (BhB1(x)− 6xBhB0(x))t

1− 6xt+ t2
,

where BhB0(x) = j1 + 6xj2 + (36x2 − 1)j3
and BhB1(x)− 6xBhB0(x) = 1− j2 − 6xj3.

Proof. Assume that the generating function of the balancing bihypernomial

sequence {BhBn(x)} has the form G(t) =
∞∑
n=0

BhBn(x)tn. Then

G(t) = BhB0(x) +BhB1(x)t+BhB2(x)t2 + . . .

Hence we get

−6xt ·G(t) = −6xBhB0(x)t− 6xBhB1(x)t2 − 6xBhB2(x)t3 − . . .
t2 ·G(t) = BhB0(x)t2 +BhB1(x)t3 +BhB2(x)t4 + . . .

By adding these three equalities above, we get

G(t)(1− 6xt+ t2) = BhB0(x) + (BhB1(x)− 6xBhB0(x))t

since BhBn(x) = 6BhBn−1(x) − BhBn−2(x) (see (6)) and the coefficients of tn

for n ≥ 2 are equal to zero. Moreover, by simple calculations we have

BhB1(x)− 6xBhB0(x) = 1− j2 − 6xj3.

J

In the same way we can prove the next result.

Theorem 8. The generating function for Lucas-balancing bihypernomial sequence
{BhCn(x)} is

g(t) =
BhC0(x) + (BhC1(x)− 6xBhC0(x))t

1− 6xt+ t2
,

where BhC0(x) = 1 + 3xj1 + (18x2 − 1)j2 + (108x3 − 9x)j3
and BhC1(x)− 6xBhC0(x) = −3x− j1 − 3xj2 + (1− 18x2)j3.
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Next, we will give the matrix representation of balancing and Lucas-balancing
bihypernomials.

Theorem 9. For positive integer n and complex x we have[
BhBn+1(x) −BhBn(x)
BhBn(x) −BhBn−1(x)

]
=

[
BhB2(x) −BhB1(x)
BhB1(x) −BhB0(x)

]
·
[

6x −1
1 0

]n−1
.

(13)

Proof. (by induction on n) If n = 1, then, assuming that the matrix to the
power of 0 is the identity matrix, the result is obvious. Assuming that the formula
(13) holds for n ≥ 1, we shall prove it for n+ 1. Using induction hypothesis and
formula (6), we have[

BhB2(x) −BhB1(x)
BhB1(x) −BhB0(x)

]
·
[

6x −1
1 0

]n

=

[
BhBn+1(x) −BhBn(x)
BhBn(x) −BhBn−1(x)

]
·
[

6x −1
1 0

]
=

[
6xBhBn+1(x)−BhBn(x) −BhBn+1(x)
6xBhBn(x)−BhBn−1(x) −BhBn(x)

]
=

[
BhBn+2(x) −BhBn+1(x)
BhBn+1(x) −BhBn(x)

]
,

which ends the proof. J

In the same way we can prove the next theorem.

Theorem 10. For positive integer n and complex x we have[
BhCn+1(x) −BhCn(x)
BhCn(x) −BhCn−1(x)

]
=

[
BhC2(x) −BhC1(x)
BhC1(x) −BhC0(x)

]
·
[

6x −1
1 0

]n−1
.

Note that multiplication of bihyperbolic numbers and bihypernomials is com-
mutative and determinant properties can be used. For example, calculating deter-
minants of matrices in Theorems 9-10, we can also obtain Cassini identities. The
use of algebraic operations and matrix algebra could give many other interesting
properties of these bihypernomials.
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3. Bihypernomials of the Chebyshev type

For nonnegative integer n and complex x, the nth Chebyshev bihypernomial
of the first, second, third and fourth kind is defined by

BhTn(x) = Tn(x) + Tn+1(x)j1 + Tn+2(x)j2 + Tn+3(x)j3, (14)

BhUn(x) = Un(x) + Un+1(x)j1 + Un+2(x)j2 + Un+3(x)j3,

BhVn(x) = Vn(x) + Vn+1(x)j1 + Vn+2(x)j2 + Vn+3(x)j3,

BhWn(x) = Wn(x) +Wn+1(x)j1 +Wn+2(x)j2 +Wn+3(x)j3,

respectively, where Tn(x) is the nth Chebyshev polynomial of the first kind, Un(x)
is the nth Chebyshev polynomial of the second kind, Vn(x) is the nth Chebyshev
polynomial of the third kind, Wn(x) is the nth Chebyshev polynomial of the
fourth kind and j1, j2, j3 are units which satisfy (1).

The use of trigonometric relationships makes it possible to obtain dependen-
cies between Chebyshev polynomials

Tn(x) =
1

2
(Un(x)− Un−2(x)), n = 2, 3, . . .

Vn(x) = Un(x)− Un−1(x), n = 1, 2, . . .

Wn(x) = Un(x) + Un−1(x), n = 1, 2, . . .

see [14]. Using these properties, it is easy to show relationships between Cheby-
shev bihypernomials

BhTn(x) =
1

2
(BhUn(x)−BhUn−2(x)), n = 2, 3, . . .

BhVn(x) = BhUn(x)−BhUn−1(x), n = 1, 2, . . .

BhWn(x) = BhUn(x) +BhUn−1(x), n = 1, 2, . . .

In the next part of this section, we will examine Chebyshev bihypernomials of
the second kind. The proofs of the theorems are the same as for the balancing
bihypernomials, so we omit them. For nonnegative integer n and complex x,
|x| 6= 1, we have

Un(x) =
αn+1(x)− βn+1(x)

α(x)− β(x)
,

where
α(x) = x+

√
x2 − 1, β(x) = x−

√
x2 − 1, (15)

see [14].
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Theorem 11. (Binet formula for Chebyshev bihypernomials of the second kind)
For nonnegative integer n and complex x, |x| 6= 1, we have

BhUn(x) =
αn+1(x)

α(x)− β(x)

(
1 + α(x)j1 + α2(x)j2 + α3(x)j3

)
+

− βn+1(x)

α(x)− β(x)

(
1 + β(x)j1 + β2(x)j2 + β3(x)j3

)
,

(16)

where α(x), β(x) are given by (15).

For simplicity of notation let

α̂(x) = 1 + α(x)j1 + α2(x)j2 + α3(x)j3,

β̂(x) = 1 + β(x)j1 + β2(x)j2 + β3(x)j3.
(17)

Then we can write (16) as

BhUn(x) =
αn+1(x)

α(x)− β(x)
α̂(x)− βn+1(x)

α(x)− β(x)
β̂(x).

Using facts that α(x)−β(x) = 2
√
x2 − 1 and α(x) ·β(x) = 1, one can easily prove

the next theorem.

Theorem 12. (general bilinear index-reduction formula for Chebyshev bihyper-
nomials of the second kind) Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that
a+ b = c+ d. Then for complex x, |x| 6= 1, we have

BhUa(x) ·BhUb(x)−BhUc(x) ·BhUd(x)

=
α̂(x)β̂(x)

4x2 − 4

(
αc(x)βd(x)− αa(x)βb(x) + βc(x)αd(x)− βa(x)αb(x)

)
,

where α̂(x), β̂(x) are given by (17).

Theorem 13. The generating function for the sequence {BhUn(x)} is

h(t) =
BhU0(x) + (BhU1(x)− 2xBhU0(x))t

1− 2xt+ t2
,

where BhU0(x) = 1 + 2xj1 + (4x2 − 1)j2 + (8x3 − 4x)j3
and BhU1(x)− 2xBhU0(x) = −j1 − 2xj2 + (−4x2 + 1)j3.

Theorem 14. For positive integer n and complex x we have[
BhUn+1(x) −BhUn(x)
BhUn(x) −BhUn−1(x)

]
=

[
BhU2(x) −BhU1(x)
BhU1(x) −BhU0(x)

]
·
[

2x −1
1 0

]n−1
.
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4. Some identities and relations between bihypernomials

In this section, we will present some identities and relations between the previ-
ously defined bihypernomials. First, we give the known properties of polynomials,
and then their bihypernomials versions.

Theorem 15. [9] Let n be an integer, n ≥ 1. Then

Cn(x) = Bn+1(x)− 3xBn(x), (18)

Cn(x) =
1

2
(Bn+1(x)−Bn−1(x)), (19)

Cn(x) = 3xBn(x)−Bn−1(x), (20)

Cn(x) = 3xCn−1(x) + (9x2 − 1)Bn−1(x). (21)

Theorem 16. Let n ≥ 0 be an integer. Then

BhCn(x) = BhBn+1(x)− 3xBhBn(x).

Proof. By formula (18) we have

BhBn+1(x)− 3xBhBn(x)

= Bn+1(x) +Bn+2(x)j1 +Bn+3(x)j2 +Bn+4(x)j3

− 3x (Bn(x) +Bn+1(x)j1 +Bn+2(x)j2 +Bn+3(x)j3)

= Bn+1(x)− 3xBn(x) + (Bn+2(x)− 3xBn+1(x))j1

+ (Bn+3(x)− 3xBn+2(x))j2 + (Bn+4(x)− 3xBn+3(x))j3

= Cn(x) + Cn+1(x)j1 + Cn+2(x)j2 + Cn+3(x)j3 = BhCn(x).

J

Using (19)-(21) we can prove the following results.

Theorem 17. Let n ≥ 1 be an integer. Then

BhCn(x) =
1

2
(BhBn+1(x)−BhBn−1(x)),

BhCn(x) = 3xBhBn(x)−BhBn−1(x),

BhCn(x) = 3xBhCn−1(x) + (9x2 − 1)BhBn−1(x).

It is easy to prove the following results.
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Lemma 1. Let n ≥ 0 be an integer. Then

n∑
l=0

Bl(x) =
(6x− 1)Bn(x)−Bn−1(x)− 1

6x− 2
, (22)

n∑
l=0

Cl(x) =
Cn+1(x)− Cn(x)

6x− 2
+

1

2
. (23)

Theorem 18. Let n ≥ 0 be an integer. Then

n∑
l=0

BhBl(x)

=
BhBn+1(x)−BhBn(x)− [1 + j1 + (6x− 1)j2 + (36x2 − 6x− 1)j3]

6x− 2
.

Proof. By (5) we get

n∑
l=0

BhBl(x) = BhB0(x) +BhB1(x) + . . .+BhBn(x)

= B0(x) +B1(x)j1 +B2(x)j2 +B3(x)j3

+B1(x) +B2(x)j1 +B3(x)j2 +B4(x)j3 + · · ·
+Bn(x) +Bn+1(x)j1 +Bn+2(x)j2 +Bn+3(x)j3

= B0(x) +B1(x) + · · ·+Bn(x)

+ (B1(x) +B2(x) + · · ·+Bn+1(x) +B0(x)−B0(x))j1

+ (B2(x) +B3(x) + · · ·+Bn+2(x) +B0(x) +B1(x)

−B0(x)−B1(x))j2

+ (B3(x) +B4(x) + · · ·+Bn+3(x) +B0(x) +B1(x) +B2(x)

−B0(x)−B1(x)−B2(x))j3.

By (22) we have

n∑
l=0

Bl(x) =
Bn+1(x)−Bn(x)− 1

6x− 2
.
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Hence we get

n∑
l=0

BhBl(x) =
Bn+1(x)−Bn(x)− 1

6x− 2

+

(
Bn+2(x)−Bn+1(x)− 1

6x− 2
−B0(x)

)
j1

+

(
Bn+3(x)−Bn+2(x)− 1

6x− 2
−B0(x)−B1(x)

)
j2

+

(
Bn+4(x)−Bn+3(x)− 1

6x− 2
−B0(x)−B1(x)−B2(x)

)
j3

=
1

6x− 2

[
Bn+1(x) +Bn+2(x)j1 +Bn+3(x)j2 +Bn+4(x)j3)

− (Bn(x) +Bn+1(x)j1 +Bn+2(x)j2 +Bn+3(x)j3)

− (1 + j1 + (6x− 1)j2 + (36x2 − 6x− 1)j3)
]

=
1

6x− 2
[BhBn+1(x)−BhBn(x)

− (1 + j1 + (6x− 1)j2 + (36x2 − 6x− 1)j3)].

J

In the same way, using (23), we can prove the following result.

Theorem 19. Let n ≥ 0 be an integer. Then

n∑
l=0

BhCl(x) =
BhCn+1(x)−BhCn(x)

6x− 2

+
1

2
[1− j1 − (6x+ 1)j2 − (36x2 + 6x− 1)j3].

We will use the following results, see [14].

Theorem 20. [14] For nonnegative integer n and complex x we have

(i) Vn(x) +Wn(x) = 2Un(x),

(ii) Vn(x) + Vn−1(x) = 2Tn(x), n = 1, 2, . . .

(iii) Wn(x)−Wn−1(x) = 2Tn(x), n = 1, 2, . . .

(iv) Tn(x) + Tn−1(x) = (1 + x)Vn−1(x), n = 1, 2, . . .

(v) Tn(x)− Tn−1(x) = (x− 1)Wn−1(x), n = 1, 2, . . .
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(vi) Tn(x)− Tn−2(x) = 2(x2 − 1)Un−2(x), n = 2, 3, . . .

Theorem 21. For nonnegative integer n and complex x we have

(i) BhVn(x) +BhWn(x) = 2BhUn(x),

(ii) BhVn(x) +BhVn−1(x) = 2BhTn(x), n = 1, 2, . . .

(iii) BhWn(x)−BhWn−1(x) = 2BhTn(x), n = 1, 2, . . .

(iv) BhTn(x) +BhTn−1(x) = (1 + x)BhVn−1(x), n = 1, 2, . . .

(v) BhTn(x)−BhTn−1(x) = (x− 1)BhWn−1(x), n = 1, 2, . . .

(vi) BhTn(x)−BhTn−2(x) = 2(x2 − 1)BhUn−2(x), n = 2, 3, . . .

Proof. We will present proof of (iv), the rest of the proofs are similar. Let n
be an integer, n ≥ 1. Using (14) and equality (iv) of Theorem 20, we have

BhTn(x) +BhTn−1(x) = Tn(x) + Tn+1(x)j1 + Tn+2(x)j2 + Tn+3(x)j3

+ Tn−1(x) + Tn(x)j1 + Tn+1(x)j2 + Tn+2(x)j3

= (1 + x)Vn−1(x) + (1 + x)Vn(x)j1 + (1 + x)Vn+1(x)j2 + (1 + x)Vn+2(x)j3

= (1 + x)BhVn−1(x),

which ends the proof of (iv). J

At the end, we give summation formulas for the Chebyshev bihypernomials
of the first kind. We will use the following theorem.

Theorem 22. [14]

T0(x) + T2(x) + T4(x) + · · ·+ T2n(x) =
1

2
U2n(x) +

1

2
, (24)

T1(x) + T3(x) + · · ·+ T2n+1(x) =
1

2
U2n+1(x). (25)

Theorem 23. Let n ≥ 0. Then

n∑
l=0

BhT2l(x) =
1

2
BhU2n(x) +

1

2
− 1

2
(j2 + 2xj3) .
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Proof. Using (14), (24) and (25) we have

n∑
l=0

BhT2l(x) = BhT0(x) +BhT2(x) + · · ·+BhT2n(x)

= (T0(x) + T1(x)j1 + T2(x)j2 + T3(x)j3)

+ (T2(x) + T3(x)j1 + T4(x)j2 + T5(x)j3) + · · ·
+ (T2n(x) + T2n+1(x)j1 + T2n+2(x)j2 + T2n+3(x)j3)

= (T0(x) + T2(x) + · · ·+ T2n(x))

+ (T1(x) + T3(x) + · · ·+ T2n+1(x))j1

+ (T2(x) + T4(x) + · · ·+ T2n+2(x) + T0(x)− T0(x))j2

+ (T3(x) + T5(x) + · · ·+ T2n+3(x) + T1(x)− T1(x))j3

=
1

2
U2n(x) +

1

2
+

1

2
U2n+1(x)j1 +

(
1

2
U2n+2(x) +

1

2
− 1

)
j2 +

(
1

2
U2n+3(x)− x

)
j3

=
1

2
U2n(x) +

1

2
+

1

2
U2n+1(x)j1 +

(
1

2
U2n+2(x)− 1

2

)
j2 +

(
1

2
U2n+3(x)− x

)
j3

=
1

2

(
U2n(x) + U2n+1(x)j1 +

1

2
U2n+2(x)j2 +

1

2
U2n+3(x)j3

)
+

1

2
− 1

2
j2 − xj3

=
1

2
BhU2n(x) +

1

2
− 1

2
(j2 + 2xj3) ,

which ends the proof. J

In the same way, we can prove the next theorem.

Theorem 24. Let n ≥ 0. Then

n∑
l=0

BhT2l+1(x) =
1

2
BhU2n+1(x)− 1

2

(
j1 + 2xj2 +

(
4x2 − 1

)
j3
)
.

5. Concluding remarks

As it was mentioned in Introduction, balancing and Lucas-balancing polyno-
mials are ,,rescaled” Chebyshev polynomials, more precisely, for positive integer
n we have the following relations: Bn(x) = Un−1(3x) and Cn(x) = Tn(3x), see
[9]. Using these and other relationships between Fibonacci type polynomials and
Chebyshev type polynomials, we can obtain new properties of defined bihyper-
nomials.
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al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
E-mail: dorotab@prz.edu.pl

Anetta Szynal-Liana
Faculty of Mathematics and Applied Physics, Rzeszow University of Technology,
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