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Common Attractive Point Approximations for
Family of Generic Generalized Bregman
Nonspreading Mappings in Banach Spaces

B. Ali, L.Y. Haruna*, M.H. Harbau

Abstract. In this paper, a class of generic generalized Bregman nonspreading mappings
which is said to include the classes of generalized Bregman nonspreading, generic gen-
eralized nonspreading, generalized hybrid mappings etc. as special cases is investigated.
Then, a theorem for existence of attractive point of the said mapping is established in
the setting of reflexive Banach spaces. Also, we prove a demiclosedness property and
construct a Halpern type iterative algorithm that converges strongly to the common at-
tractive point of finite family of generic generalized Bregman nonspreading mappings in
the space. We further apply our main result to approximate common fixed point of the
said mappings. Our results improve and generalize many corresponding ones announced
in the literature.
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1. Introduction

Let C be a nonempty subset of a real Hilbert space H and T : C → H be a
map. Denote the set of fixed points of T by F (T ) and the set of all attractive
points of T by A(T ), i.e., F (T ) = {u ∈ C : Tu = u} and A(T ) = {u ∈ H :
∥Tv − u∥ ≤ ∥v − u∥,∀v ∈ C}. A nonlinear mapping T : C → H is called

(1) nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ ∀ x, y ∈ C;

(2) nonspreading [20] if 2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2 ∀ x, y ∈ C;
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(3) hybrid [20, 29] if 3∥Tx−Ty∥2 ≤ ∥x−y∥2+∥Tx−y∥2+∥Ty−x∥2 ∀ x, y ∈ C;

(4) (α, β)-generalized hybrid [17] if for some α, β ∈ R, the inequality

α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

holds for all x, y ∈ R. Observe that a (1, 0)-generalized hybrid mapping is non-
expansive, a (32 ,

1
2)-generalized hybrid mapping is hybrid and a (2, 1)-generalized

hybrid mapping is nonspreading. The class of generalized hybrid mappings was
extended to that of generalized nonspreading mappings in the setting of Banach
spaces more general than Hilbert. A mapping T of nonempty subset C of a
smooth Banach space E into itself is called a generalized nonspreading mapping
[18] if there exists α, β, γ, δ ∈ R such that

αϕ(Tx, Ty) + (1− α)ϕ(x, Ty) + γ{ϕ(Ty, Tx)− ϕ(Ty, x)}
≤ βϕ(Tx, y) + (1− β)ϕ(x, y) + δ{ϕ(y, Tx)− ϕ(y, x)}

for all x, y ∈ C, where ϕ : E × E → R is the Lyapunov functional defined by
ϕ(x, y) = ||x||2+2⟨x, Jy⟩+ ||y||2 and J is the duality mapping from E into E∗ de-
fined by Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}. By calling such mapping T an
(α, β, γ, δ)-generalized nonspreading mapping, we see that a (1,1,1,0)-generalized
nonspreading mapping is nonspreading [20]. If E is a real Hilbert space, then
ϕ(x, y) = ∥x− y∥2 and subsequently (α, β, γ, δ)-generalized nonspreading map-
ping reduces to (α + γ, β + δ)-generalized hybrid mapping. A class of mappings
which is said to include as special case that of generalized nonspreading ones
was introduced by Takahashi et al. [30]. A mapping T : C → E is called generic
(α, β, γ, δ, ϵ, ζ)-generalized nonspreading mapping if there exist α, β, γ, δ, ϵ, ζ ∈ R
such that for all x, y ∈ C, (i) α+ β + γ + δ ≥ 0 (ii) α+ β > 0 and

(iii) αϕ(Tx, Ty) + βϕ(x, Ty) + γϕ(Tx, y) + δϕ(x, y)

≤ ϵ{ϕ(Ty, Tx)− ϕ(Ty, x)}+ ζ{ϕ(y, Tx)− ϕ(y, x)}. (1)

A generic (α, β, γ, δ, ϵ, ζ)-generalized nonspreading mapping reduces to general-
ized nonspreading if α+ β = −γ − δ = 1.

The existence and approximations of attractive points of the above mentioned
generalized nonlinear mappings have been studied by various authors [see, for ex-
ample, [4, 31, 32, 33] and the references therein]. Several iterative schemes have
been proposed for such approximation, one of which is the so called Halpern’s
scheme introduced by Halpern [14]. Takahashi et al. [31] used the concept of
attractive points of nonlinear mappings and obtained a new strong convergence
theorem for generalized hybrid mappings using Halpern’s type scheme in Hilbert
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spaces. The same authors [30] proved weak convergence theorem of Mann’s type
algorithm for generic generalized nonspreading mappings in Banach spaces.
Let E be a real Banach space and f : E → (−∞,+∞] a strictly convex and
Gâteaux differentiable function. The function Df : domf× int(dom(f)) →
[0,+∞), defined by

Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩, (2)

is called the Bregman distance with respect to f (see [13]).

Remark 1. If E is a smooth Banach space and f(x) = ∥x∥2 for all x ∈ E, then
we have ∇f(x) = 2Jx for all x ∈ E, where J : E → E∗ is the normalized duality
mapping. Hence Df (x, y) = ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀ x, y ∈E. And if
E is a Hilbert space, then Df (x, y) = ∥x− y∥2, ∀x, y ∈ E.

Observe that from (2), we have for any x ∈ domf and y, z ∈ int(dom(f)).

Df (x, z) = Df (x, y) +Df (y, z) + ⟨∇f(y)−∇f(z), x− y⟩. (3)

which is called the three point identity. In 2017, Ali et al. [5] introduced the
notion of Bregman attractive point in reflexive Banach spaces. Let the set of
Bregman attractive points be denoted by Af (T ), i.e.

Af (T ) = {u ∈ E : Df (u, Tx) ≤ Df (u, x), ∀x ∈ C}, (4)

where C is a nonempty subset of int(dom(f)). They also established the exis-
tence of attractive point of generalized Bregman nonspreading mappings in the
space. For more recent results related to Bregman attractive point, see [1, 2, 3].

Motivated and inspired by the works of Takahashi et al. [30], Ali et al. [5] and
Takahashi et al. [31], we first prove the existence theorem for attractive point of
generic generalized Bregman nonspreading mapping in reflexive Banach spaces.
Also, we propose a constructive Halpern-type algorithm that converges strongly
to a common attractive point of finite family of generic generalized Bregman
nonspreading mappings in reflexive Banach spaces. Our results improve, extend
and generalize those of Takahashi et al. [31], Takahashi et al. [30] and Ali et al.
[5] in the sense of spaces, mappings and the nature of convergence.

2. Preliminaries

Let E be a real reflexive Banach space with norm ∥ · ∥ and E∗ the dual space
of E. Let f : E → (−∞,+∞] be a proper, lower semi-continuous and convex
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function. The Fenchel conjugate of f is the convex function f∗ : E∗ → (−∞,+∞]
defined by f∗(x∗) = sup{⟨x∗, x⟩− f(x) : x∈E}. Observe that the Young-Fenchel
inequality holds: ⟨x∗, x⟩ ≤ f(x) + f∗(x∗), ∀x ∈ E, x∗ ∈ E∗. It is well known
that if f : E → (−∞,+∞] is proper, convex and lower semi-continuous, then f∗ :
E∗ → (−∞,+∞] is a proper, convex and weak∗ lower semi-continuous function;

see, for example, [28]. A sublevel of f is the set of the form levf≤r := {x ∈ E :
f(x) ≤ r} for r ∈ R. A function f on E is coercive [16] if every sublevel of f is
bounded, equivalently lim

∥x∥→+∞
f(x) = +∞. Let Br := {x ∈ E : ∥x∥ ≤ r} for all

r > 0 and SE := {x ∈ E : ∥x∥ = 1}. A function f on E is said to be strongly

coercive [36] if lim
∥x∥→+∞

f(x)
∥x∥ = +∞.

For any x ∈ int(dom(f)) and y ∈ E, the right-hand derivative of f at x in the
direction y is defined by

f◦(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (5)

The function f is said to be Gâteaux differentiable at x if limt→0+
f(x+ty)−f(x)

t
exists for any y. In this case, the gradient of f at x is the function ∇f(x) : E →
(−∞,+∞] defined by ⟨∇f(x), y⟩=f◦(x, y), for any y ∈ E . The function f is said
to be Gâteaux differentiable if it is Gâteaux differentiable at every x∈int(dom(f)).
The function f is said to be Fréchet differentiable at x if the limit in (5) is at-
tained uniformly in y, ∥y∥ = 1. Finally, f is said to be Fréchet differentiable on
a subset C of E if the limit (5) is attained uniformly for x ∈ E and ∥y∥ = 1.
It is well known that if a continuous convex function f is Gâteaux differentiable
(resp. Fréchet differentiable) in int(dom(f)), then ∇f is norm-to-weak∗ continu-
ous (resp. continuous) in int(dom(f)) (see also [7]).

The following two results are proved in [36]:

Lemma 1 ([36]). Let E be a reflexive Banach space and let f : E → R be a
continuous convex function which is bounded on bounded sets. Then the following
assertions are equivalent:

(1) f is strongly coercive and uniformly convex on bounded subsets of E;

(2) domf∗ = E∗, f∗ is bounded on bounded subsets and uniformly smooth on
bounded sets;

(3) domf∗ = E∗, f∗ is Fréchet differentiable and ∇f∗ is uniformly norm-to-
norm continuous on bounded sets.
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Lemma 2 ([36]). Let E be a reflexive Banach space and let f : E → R be a con-
tinuous convex function which is strongly coercive. Then the following assertions
are equivalent:

(1) f is bounded on bounded sets and uniformly smooth on bounded sets;

(2) f∗ is Fréchet differentiable and f∗ is uniformly norm-to-norm continuous
on bounded sets.

(3) domf∗ = E∗, f∗ is strongly coercive and uniformly convex on bounded sets.

Let x ∈ int(dom(f)). The subdifferential of f at x is the convex set defined
by

∂f(x) = {x∗ ∈ E∗ : f(x) + ⟨x∗, y − x⟩ ≤ f(y), ∀y ∈ E}.

Definition 1 ([9]). The function f is said to be:
(i) Essentially smooth, if ∂f is both locally bounded and single-valued on its do-
main;
(ii) Essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f
is strictly convex on every subset of domf ;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark 2. Let E be a reflexive Banach space. Then we have:

(i) f is essentially smooth if and only if f∗ is essentially strictly convex [see
[9], Theorem 5.4];

(ii) (∂f)−1 = ∂f∗;

(iii) f is Legendre if and only if f∗ is Legendre [see [9],Corrolary 5.5]

(iv) If f is Legendre, then ∇f is a bijection satifying ∇f = (∇f∗)−1, ran∇f =
dom∇f∗ = int(dom(f∗)) and ran ∇f∗ = dom∇f = int(dom(f)) [see [9],
Theorem 5.10].

Various examples of Legendre functions were given in [9, 8]. One important
and interesting Legendre function is 1

p∥ · ∥
p (1 < p < ∞), when E is a smooth and

strictly convex Banach space. In this case, the gradient ∇f of f coincides with
the generalized duality mapping of E, i.e, ∇f = Jp (1 < p < ∞). In particular,
∇f = I is the identity mapping in Hilbert spaces.

Lemma 3 ([9], Theorem 7.3 (vi), (vii)). Suppose u ∈ domf and v ∈ int(dom(f)).
Then

(i) If f is strictly convex, then Df (u, v) = 0 ⇔ u = v;
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(ii) If f is Gâteaux differentiable in int(dom(f)) and essentially strictly convex,
then Df (u, v) = Df∗(∇f(v),∇f(u)).

Lemma 4 ([6], Theorem 1.8). If f : E → R is uniformly Fréchet differentiable,
then f is uniformly continuous on E.

Lemma 5 ([24]). If f : E → R is uniformly Fréchet differentiable and bounded
on bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of
E from the strong topology of E to the strong topology of E∗.

A function f : E → R is called a Bregman function [19] if the following
conditions are satisfied:

(i) f is continuous, strictly convex and Gâteaux differentiable.

(ii) the set {z ∈ E : Df (x, z) ≤ r} is bounded for all x ∈ E and r ≥ 0.

Lemma 6 ([19]). Let E be a reflexive Banach space, let f : E → R be a strongly
coercive Bregman function and let Vf be the function defined by

Vf (x, x
∗) = f(x)− ⟨x∗, x⟩+ f∗(x∗), ∀ x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:
(1) Df (x,∇f∗(x∗)) = V (x, x∗) for all x ∈ E and x∗ ∈ E∗.
(2) V (x, x∗) + ⟨y∗,∇f∗(x∗)− x⟩ ≤ V (x, x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

It follows (see, for example, [34]) from the definition that V is convex in the
second argument and

V (x,∇f(y)) = Df (x, y).

A Bregman projection [10] of x ∈ int(dom(f)) onto the nonempty, closed and

convex set C ⊂ domf is the unique vector P f
C(x) ∈ C satisfying

Df (P
f
C(x), x) = inf{Df (y, x) : y ∈ C}.

The following is a well-known fact about Bregman projections.

Lemma 7 ([12]). Let C be a nonempty, closed and convex subset of a reflexive
Banach space E. Let f : E → R be a Gâteaux differentiable and totally convex
function and let x ∈ E. Then

(a) z = P f
Cx if and only if ⟨∇f(x)−∇f(z), y − z⟩ ≤ 0, ∀y ∈ C;

(b) Df (y, P
f
Cx) +Df (P

f
Cx, x) ≤ Df (y, x) ∀x ∈ E, y ∈ C.
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The following result was proved in [22].

Lemma 8. Let E be a Banach space, let r > 0 be a constant, let ρr be the
gauge of uniform convexity of g and let g : E → R be a convex function which is
uniformly convex on bounded subsets of E. Then,

(i) for any x, y ∈ Br and α ∈ (0, 1),

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1− α)ρr(∥x− y∥)

(ii) for any x, y ∈ Br, ρr(∥x− y∥) ≤ Dg(x, y)

(iii) If in addition g is bounded on bounded subsets and uniformly convex on
bounded subsets of E, then for any x ∈ E,y∗, z∗ ∈ B∗

r and α ∈ (0, 1),

Vg(x, αy
∗+(1−α)z∗) ≤ αVg(x, y

∗)+(1−α)Vg(x, z
∗)−α(1−α)ρ∗r(∥y∗−z∗∥).

Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function.
The modulus of total convexity of f at x ∈ int(dom(f)) is the function vf (x, .) :
int(dom(f))× [0,+∞] → [0,+∞] defined by

vf (x, t) = inf{Df (y, x) : y ∈ domf, ∥y − x∥ = t}.

The function is totally convex at x if vf (x, t) > 0 whenever t > 0. The function f
is called totally convex if it is totally convex at every point x ∈ int(dom(f)) and
is said to be totally convex on bounded sets if vf (B, t) > 0, for any nonempty
bounded subset B of E and t > 0, where the modulus of total convexity of the
function f on the set B is the function Vf : int(dom(f)) × [0,+∞] → [0,+∞]
defined by

Vf (B, t) = inf{vf (x, t) : x ∈ B ∩ domf}.

Lemma 9 ([27]). If x ∈ int(dom(f)), then the following statements are equiva-
lent:

(i) The function f is totally convex at x;

(ii) for any sequence {yn} ⊂ domf ,limn→+∞Df (yn, x) = 0 ⇒ limn→+∞ ∥yn −
x∥ = 0.

Recall that the function f is sequentially consistent [11] if for any sequences
{xn} and {yn} in E, such that the first one is bounded, the following relation
holds:

lim
n→+∞

Df (yn, xn) = 0 ⇒ lim
n→+∞

∥yn − xn∥ = 0.
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Lemma 10 ([11]). The function f is totally convex on bounded sets if and only
if it is sequentially consistent.

Lemma 11 ([26]). Let f : E → (−∞,+∞] be a Legendre function such that
∇f∗ is bounded on bounded subsets of int(domf∗). Let x ∈ int(dom(f)). If
{Df (x, xn)}n∈N is bounded, then so is the sequence {xn}n∈N.

Lemma 12 ([25]). Let f : E → R be a Gâteaux differentiable and totally convex
function, x0 ∈ E and let C be a nonempty, closed and convex subset of E. Suppose
that the sequence {xn} is bounded and any subsequential limit of {xn} belongs to

C. If Df (xn, x0) ≤ Df (P
f
C(x0)x0, x0) for all n ∈ N, then {xn} converges strongly

to P f
C(x0).

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of the dual space of l∞ (i.e µ ∈ (l∞)∗). The value of µ at
f = (x1, x2, x3, .....) ∈ l∞ is denoted by µ(f) and sometimes by µn(xn). A linear
functional µn on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where e = (1, 1, 1, ...).
A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn). It is known
that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then for
f = (x1, x2, x3, .....) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, .....) ∈ l∞ and xn → a ∈ R, then we have
µ(f) = µn(xn) = a. The following result is well-known, see [15].

Lemma 13. Let E be a reflexive Banach space, let {xn} be a bounded sequence in
E and let µ be a mean on l∞. Then there exists a unique point z0 ∈ c̄o{xn : n ∈ N}
such that µn⟨xn, y∗⟩ = ⟨z0, y∗⟩ ∀ y∗ ∈ E∗.

The following results will play a vital role in establishing our main results.

Lemma 14 ([35]). Let {an} be a sequence of non-negative real numbers satisfying
the following relation:

an+1 ≤ (1− α)an + αnδn, n ≥ n0,

where {αn} ⊂ (0, 1) and {δn} is a real sequence satisfying the following conditions:
limn→∞ αn = 0,

∑∞
n=1 αn = ∞ and lim supn→∞ δn ≤ 0. Then limn→∞ an = 0.

Lemma 15 ([21]). Let {an} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} such that ani ≤ ani+1 for all i ∈ N. Then there
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exists a non-decreasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1,

ak ≤ amk+1.

In fact, mk = {j ≤ k : aj < aj+1}.

3. Main Results

In this section, we establish a new strong convergence theorem for common
attractive point of finite family of generic generalized Bregman nonspreading
mappings in a real reflexive Banach space E. But first we prove the following.

Lemma 16. Let f : E → (−∞,+∞] be a Legendre function which is Fréchet
differentiable. Let T be a mapping of a nonempty subset C of int(dom(f)) into
itself. Then the set of attractive points Af (T ) is closed and convex.

Proof. We first show that the set Af (T ) is closed. Let {xn} be a sequence in
Af (T ) such that xn → u as n → ∞. Then let us show that u ∈ Af (T ). Now, for
any x ∈ C,

Df (u, Tx) = Df ( lim
n→∞

xn, Tx) = lim
n→∞

Df (xn, Tx)

≤ lim
n→∞

Df (xn, x) = Df ( lim
n→∞

xn, x)

= Df (u, x).

Thus, u ∈ Af (T ) and so Af (T ) is closed. For convexity, we let u, v ∈ Af (T ) and
α ∈ (0, 1). Then let us we show that z := αu + (1 − α)v ∈ Af (T ). Now for any
x ∈ C,

Df (z, Tx) = f(z)− f(Tx)− ⟨∇f(Tx), z − Tx⟩
= f(z)− f(Tx)− ⟨∇f(Tx), αu+ (1− α)v − Tx⟩
= f(z)− f(Tx)− α⟨∇f(Tx), u− Tx⟩
− (1− α)⟨∇f(Tx), v − Tx⟩
= f(z)− αf(u)− (1− α)f(v)

+ α[f(u)− f(Tx)− ⟨∇f(Tx), u− Tx⟩]
+ (1− α)[f(v)− f(Tx)− ⟨∇f(Tx), v − Tx⟩
= f(z)− αf(u)− (1− α)f(v) + αDf (u, Tx)

+ (1− α)Df (v, Tx)
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≤ f(z)− αf(u)− (1− α)f(v) + αDf (u, x) + (1− α)Df (v, x)

= f(z)− αf(x)− (1− α)f(x)− ⟨∇f(x), αu+ (1− α)v − x⟩
= f(z)− f(x)− ⟨∇f(x), z − x⟩
= Df (z, x).

Thus, Df (z, Tx) ≤ Df (z, x). Therefore, z ∈ Af (T ). Hence Af (T ) is closed and
convex. This completes the proof. ◀

Definition 2. Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function and C a nonempty subset of int(dom(f)). A mapping T : C → C is
called a generic generalized Bregman nonspreading mapping if there exist real
numbers α, β, γ, δ, ϵ, ζ such that for all x, y ∈ C, (i) α + β + γ + δ ≥ 0; (ii)
α+ β > 0;

(iii) αDf (Tx, Ty) + βDf (x, Ty) + γDf (Tx, y) + δDf (x, y)

≤ ϵ
(
Df (Ty, Tx)−Df (Ty, x)

)
+ ζ

(
Df (y, Tx)−Df (y, x)

)
. (6)

Remark 3. Observe that the generic generalized Bregman nonspreading mapping
reduces to generalized Bregman nonspreading if α + β = −γ − δ = 1 and it is
Bregman nonspreading [23] if α = 1, β = δ = ζ = 0 and γ = ϵ = −1. Also, in
view of Remark 1, if E is smooth and f(x) = ∥x∥2, then the generic general-
ized Bregman nonspreading mapping reduces to generic generalized nonspreading
mapping in the sense of [30]. We now establish the existence of attractive point
of generic generalized Bregman nonspreading mapping.

Theorem 1. Let f : E → (−∞,+∞] be a strongly coercive Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on a bounded
subsets of E. Let C be a nonempty subset of int(dom(f)) and T : C → C be a
generic generalized Bregman nonspreading mapping. Then Af (T ) ̸= ∅ if and only
if {Tnx} is bounded for some x ∈ C.

Proof. SupposeAf (T ) ̸= ∅. Then by taking z ∈ Af (T ) we see thatDf (z, Tx) ≤
Df (z, x) for all x ∈ C. Thus,

Df (z, T
nx) ≤ Df (z, T

n−1x) ≤ ... ≤ Df (z, Tx) ≤ Df (z, x),

for all x, y ∈ C. Therefore, {Df (z, T
nx)} is bounded. Since f is strongly coercive

and totally convex which is bounded on a bounded subset of E, it follows from
Lemma 1 that ∇f∗ is uniformly norm to norm continuous on bounded subsets of
domf∗ = E∗ and consequently ∇f∗ is bounded. Hence, by Lemma 11, {Tnx} is
bounded.



Common Attractive Point Approximations in Banach Spaces 37

Conversely, suppose {Tnx} is bounded. Replacing x with Tnx in (iii) of Definition
2, we see that for any y ∈ C and n ∈ N ∪ {0},

αDf (T
n+1x, Ty) + βDf (T

nx, Ty) + γDf (T
n+1x, y) + δDf (T

nx, y)

≤ ϵ
(
Df (Ty, T

n+1x)−Df (Ty, T
nx)

)
(7)

+ ζ
(
Df (y, T

n+1x)−Df (y, T
nx)

)
.

Since {Tnx} is bounded, then by applying Banach limit µn on both sides of the
inequality (7) we get

αµnDf (T
nx, Ty) + βµnDf (T

nx, Ty) + γµnDf (T
nx, y) + δµnDf (T

nx, y)

≤ ϵµn

(
Df (Ty, T

nx)−Df (Ty, T
nx)

)
+ ζµn

(
Df (y, T

nx)−Df (y, T
nx)

)
.

This implies

(α+ β)µnDf (T
nx, Ty) + (γ + δ)µnDf (T

nx, y) ≤ 0.

Using the three point identity (3), we obtain

(α+ β)µn

(
Df (T

nx, y) +Df (y, Ty) + ⟨∇f(y)−∇f(Ty), Tnx− y⟩
)

+(γ + δ)µnDf (T
nx, y) ≤ 0.

This implies

(α+ β + γ + δ)µnDf (T
nx, y)

+ (α+ β)
(
Df (y, Ty) + µn⟨∇f(y)−∇f(Ty), Tnx− y⟩

)
≤ 0. (8)

By applying condition (i) of Definition 2 in the inequality (8), we get

(α+ β)
(
Df (y, Ty) + µn⟨∇f(y)−∇f(Ty), Tnx− y⟩

)
≤ 0.

Thus, there exists z0 ∈ E such that by Lemma 13 we get

(α+ β)
(
Df (y, Ty) + ⟨∇f(y)−∇f(Ty), z0 − y⟩

)
≤ 0.

Also, applying condition (ii) of Definition 2 together with the use of (3), we get

Df (y, Ty) +Df (z0, T y)−Df (y, Ty)−Df (z0, y) ≤ 0.

Therefore, Df (z0, Ty) ≤ Df (z0, y). Hence, Af (T ) ̸= ∅. This completes the proof.
◀

The following Lemma gives the demiclosedness property of generic generalized
Bregman nonspreading mapping which will play a vital role in proving our main
result.
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Lemma 17. (Demiclosedness Property). Let f : E → (−∞,+∞] be a Legendre
function which is uniformly Fréchet differentiable on bounded subsets of E. Let
C be a nonempty subset of int(dom(f)) and T : C → C be a generic generalized
Bregman nonspreading mapping. If xn ⇀ z and xn − Txn → 0, then z ∈ Af (T ).

Proof. Let {xn} ⊂ C be a sequence such that xn ⇀ z and xn − Txn → 0.
Since f is uniformly Fréchet differentiable on bounded subsets of E, then by
Lemmas 4 and 5, both f and ∇f are uniformly continuous on a bounded subsets
of E, respectively. This implies f(xn)− f(Txn) → 0 and ∇f(xn)−∇f(Txn) →
0 as n → ∞. Thus, for any y ∈ C, we have

Df (Ty, Txn) − Df (Ty, xn) = f(Ty)− f(Txn)− ⟨∇f(Txn), T y − Txn⟩
− f(Ty) + f(xn) + ⟨∇f(xn), T y − xn⟩
= f(xn)− f(Txn)− ⟨∇f(Txn), Ty − Txn⟩
+ ⟨∇f(xn), T y − xn⟩
= f(xn)− f(Txn)− ⟨∇f(Txn)−∇f(xn), T y − Txn⟩
+ ⟨∇f(xn), Txn − xn⟩ → 0 as n → ∞. (9)

Since T : C → C is a generic generalized Bregman nonspreading mapping, there
exist α, β, γ, δ, ϵ, ζ ∈ R such that by replacing x with xn in (iii) of Definition 2,
we obtain

αDf (Txn, Ty) + βDf (xn, T y) + γDf (Txn, y) + δDf (xn, y)

≤ ϵ
(
Df (Ty, Txn)−Df (Ty, xn)

)
(10)

+ ζ
(
Df (y, Txn)−Df (y, xn)

)
, ∀ y ∈ C.

Using equation (3) in inequality (10), we get

α
(
Df (Txn, y) +Df (y, Ty) + ⟨∇f(y)−∇f(Ty), Txn − y⟩

)
+ β

(
Df (xn, y) +Df (y, Ty) + ⟨∇f(y)−∇f(Ty), xn − y⟩

)
+ γDf (Txn, y)

+ δDf (xn, y)

≤ ϵ
(
Df (Ty, Txn)−Df (Ty, xn)

)
+ ζ

(
Df (y, Txn)−Df (y, xn)

)
.

This implies

α
(
Df (Txn, y)−Df (xn, y) +Df (xn, y) +Df (y, Ty))

+ α⟨∇f(y)−∇f(Ty), Txn − y⟩
)

+ β
(
Df (xn, y) +Df (y, Ty) + ⟨∇f(y)−∇f(Ty), xn − y⟩

)
+ γ

(
Df (Txn, y)−Df (xn, y) +Df (xn, y)

)
+ δDf (xn, y)
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≤ ϵ
(
Df (Ty, Txn)−Df (Ty, xn)

)
+ ζ

(
Df (y, Txn)−Df (y, xn)

)
.

Thus

(α+ β + γ + δ)Df (xn, y)

+ α
(
Df (Txn, y)−Df (xn, y) +Df (y, Ty) + ⟨∇f(y)−∇f(Ty), Txn − y⟩

)
+ β

(
Df (y, Ty) + ⟨∇f(y)−∇f(Ty), xn − y⟩

)
+ γ

(
Df (Txn, y)−Df (xn, y)

)
≤ ϵ

(
Df (Ty, Txn)−Df (Ty, xn)

)
+ ζ

(
Df (y, Txn)−Df (y, xn)

)
. (11)

Since α+ β + γ + δ ≥ 0, from (11) we obtain

α
(
Df (Txn, y)−Df (xn, y) +Df (y, Ty) + ⟨∇f(y)−∇f(Ty), Txn − y⟩

)
+ β

(
Df (y, Ty) + ⟨∇f(y)−∇f(Ty), xn − y⟩

)
+ γ

(
Df (Txn, y)−Df (xn, y)

)
≤ ϵ

(
Df (Ty, Txn)−Df (Ty, xn)

)
+ ζ

(
Df (y, Txn)−Df (y, xn)

)
.

⇒ α
(
Df (Txn, y)−Df (xn, y) +Df (y, Ty) + ⟨∇f(y)−∇f(Ty), Txn − xn⟩

)
+ α⟨∇f(y)−∇f(Ty), xn − y⟩+ β

(
Df (y, Ty) + ⟨∇f(y)−∇f(Ty), xn − y⟩

)
+ γ

(
Df (Txn, y)−Df (xn, y)

)
≤ ϵ

(
Df (Ty, Txn)−Df (Ty, xn)

)
+ ζ

(
Df (y, Txn)−Df (y, xn)

)
.

Taking limit as n → ∞, we get

α
(
Df (y, Ty) + ⟨∇f(y)−∇f(Ty), z − y⟩

)
+ β

(
Df (y, Ty) + ⟨∇f(y)−∇f(Ty), z − y⟩

)
≤ 0.

⇒ (α+ β)
(
Df (y, Ty) + ⟨∇f(y)−∇f(Ty), z − y⟩

)
≤ 0.

Again using (3), we have

(α+ β)
(
Df (y, Ty) +Df (z, Ty)−Df (y, Ty) +Df (z, y)

)
≤ 0.

Since α+β > 0, we obtain Df (z, Ty) ≤ Df (z, y) for all y ∈ C. Hence, z ∈ Af (T ).
This completes the proof. ◀

The following Proposition will be used in proving our main result.

Proposition 1. Let f : E → (−∞,+∞] be a Legendre and uniformly Fréchet
differentiable function on bounded subsets of E. Let C be a nonempty subset
of int(dom(f)) and T : C → C be a generic generalized Bregman nonspreading
mapping such that Af (T ) ̸= ∅. Suppose that u ∈ C and {xn} is bounded in C
with xn − Txn → 0 as n → ∞. Then lim sup

n→∞
⟨∇f(u)−∇f(z), xn − z⟩ ≤ 0; where

z = PAf (T )(u) is the Bregman projection of C onto Af (T ).
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Proof. We have seen from Lemma 16 that Af (T ) is closed and convex. Let
u ∈ C and z = PAf (T )(u). Since E is reflexive and {xn} is bounded, there
exists a subsequence {xnk

} of {xn} such that xnk
⇀ v ∈ C as k → ∞. Since

lim
k→∞

∥xnk
− Txnk

∥= lim
n→∞

∥xn − Txn∥ = 0, by Lemma 17, v ∈ Af (T ). Now, let

{xnk
} be a subsequence of {xn} such that

lim sup
n→∞

⟨∇f(u)−∇f(z), xn − z⟩ = lim
k→∞

⟨∇f(u)−∇f(z), xnk
− z⟩

= ⟨∇f(u)−∇f(z), v − z⟩.

Then, by Lemma 7, we get
lim sup
n→∞

⟨∇f(u) − ∇f(z), xn − z⟩ = ⟨∇f(u) − ∇f(z), v − z⟩ ≤ 0, for all v ∈

Af (T ), where z = Pf
Af (T )(u) is the Bregman projection of C onto Af (T ). Hence

lim sup
n→∞

⟨∇f(u)−∇f(z), xn − z⟩ ≤ 0. This completes the proof. ◀

We now prove our main result.

Theorem 2. Let f : E → (−∞,+∞] be a strongly coercive Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of int(domf) and
Ti : C → C for i=1,2,. . .,N be a finite family of generic generalized Bregman
nonspreading mappings such that A = ∩N

i=1Af (Ti) ̸= ∅. Let {xn} be a sequence
generated by u, x1 ∈ C:{

yn = ∇f∗[βn∇fxn + (1− βn)∇fTxn];

xn+1 = Pf
C [∇f∗(αn∇fu+ (1− αn)∇fyn)],

(12)

where T = TN ◦ TN−1 ◦ ... ◦ T1,{βn} ⊂ [a, b] ⊂ (0, 1) and {αn} is a sequence in
(0, 1) satisfying (C1) : limn→∞ αn = 0 and (C2) :

∑∞
n=1 αn = +∞. Then {xn}

converges strongly to z = PA(u).

Proof. From Lemma 16, we see that Af (Ti) is closed and convex for each
i=1,2,...,N and so A = ∩N

i=1Af (Ti) is closed and convex. Let z = PA(u) ∈ A.
Then from (12), Lemma 6 and equation (4) we have

Df (z, yn) = Df (z,∇f∗[βn∇fxn + (1− βn)∇fTxn])

≤ βnDf (z, xn) + (1− βn)Df (z, Txn)

= βnDf (z, xn) + (1− βn)Df (z, TN ◦ TN−1 ◦ ... ◦ T1(xn))

≤ βnDf (z, xn) + (1− βn)Df (z, TN−1 ◦ ... ◦ T1(xn))

·
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·
·
≤ βnDf (z, xn) + (1− βn)Df (z, xn)

= Df (z, xn).

Similarly,

Df (z, xn+1) = Df (z,P
f
c [∇f∗(αn∇f(u) + (1− αn)∇fyn)])

≤ Df (z,∇f∗[αn∇f(u) + (1− αn)∇fyn])

= αnDf (z, u) + (1− αn)Df (z, yn) (13)

≤ αnDf (z, u) + (1− αn)Df (z, xn).

Thus, by induction we obtain

Df (z, xn+1) ≤ max{Df (z, u), Df (z, xn)} ∀ n ≥ 1.

This implies that the sequence {Df (z, xn)} is bounded. Since z ∈ A, by bound-
edness of {Df (z, xn)} and definition of Af (T ), there exists k > 0 such that

Df (z, Txn) ≤ Df (z, xn) ≤ k, ∀ n ∈ N.

Hence by Lemma 12, both {xn} and {Txn} are bounded. Since f is bounded
on bounded subsets of E, by [[11]. Proposition 1.1.11], ∇f is also bounded
on bounded subsets of E∗. Hence the sequences {∇f(xn)} and {∇f(Txn)}
are bounded in E∗. We know from Lemma 2(3) that domf∗ = E∗ and f∗ is
strongly coercive and uniformly convex on bounded subsets of E∗. Let s =
sup{∥∇f(xn)∥, ∥∇f(Txn)∥} and ρ∗s : E∗ → R, the gauge function of uniform
convexity of the conjugate function f∗. Then, by Lemmas 6 and 8, we have

Df (z, yn) = Df (z,∇f∗[βn∇fxn + (1− βn)∇fTxn])

= Vf (z, βn∇fxn + (1− βn)∇f(Txn)

= f(z)− ⟨z, βn∇fxn + (1− βn)∇f(Txn)⟩
+ f∗(βn∇fxn + (1− βn)∇f(Txn))

≤ (1− βn)f(z) + βnf(z)− βn⟨z,∇fxn⟩ − (1− βn)⟨z,∇f(Txn)⟩
+ βnf

∗(∇f(xn)) + (1− βn)f
∗(∇f(Txn))

− βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
= (1− βn)[f(z)− ⟨z,∇f(Txn)⟩+ f∗(∇f(Txn))]

+ βn[f(z)− ⟨z,∇fxn⟩+ f∗(∇f(xn))]

− βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
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= (1− βn)Vf (z,∇f(Txn)) + βnVf (z,∇f(xn))

− βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
= (1− βn)Df (z, Txn) + βnDf (z, xn)

− βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
≤ (1− βn)Df (z, xn) + βnDf (z, xn)

− βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
= Df (z, xn)− βn(1− βn)p

∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
. (14)

It follows from (13) and (14) that

Df (z, xn+1) ≤ αnDf (z, u) + (1− αn)Df (z, yn)

≤ αnDf (z, u) + (1− αn)Df (z, xn)

− (1− αn)βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
= αn[Df (z, u)−Df (z, xn) + βn(1− βn)p

∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
]

+ Df (z, xn)− βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
.

Putting k1 = sup{|Df (z, u)−Df (z, xn)|+βn(1−βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
},

we see that

Df (z, xn+1) ≤ Df (z, xn)− βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
+ αnk1.

Which implies

βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
≤ Df (z, xn)−Df (z, xn+1) + αnk1 (15)

We now divide the remaining proof into the following cases.
Case I. Let there exist n0 ∈ N such that for all n ≥ n0 the sequence {Df (z, xn)}
is non-increasing and since it is bounded, it is convergent. Thus, we see that

Df (z, xn)−Df (z, xn+1) → 0 as n → ∞. (16)

Now, using C1 and equation (16) in (15) we have

βn(1− βn)p
∗
s

(
∥∇f(xn)−∇f(Txn)∥

)
→ 0 as n → ∞.

Since βn ∈ [a, b] ⊂ (0, 1), by property of p∗s we have

lim
n→∞

∥∇f(xn)−∇f(Txn)∥ = 0.

Since f is strongly coercive and uniformly convex on bounded subsets of E, by
Lemma 2(2), f∗ is Fréchet differentiable and ∇f∗ is uniformly norm-to-norm
continuous on bounded subsets of E. Thus, we obtain

lim
n→∞

∥xn − Txn∥ = lim
n→∞

∥∇f∗(∇f(xn))−∇f∗(∇f(Txn))∥ = 0.
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On the other hand,

Df (xn, yn) = Df (xn,∇f∗[βn∇fxn + (1− βn)∇fTxn])

≤ βnDf (xn, xn) + (1− βn)Df (xn, Txn)

= (1− βn)Df (xn, Txn) → 0 as n → ∞.

It follows from above expression and Lemma 9 that

lim
n→∞

∥xn − yn∥ = 0. (17)

Now, let zn = ∇f∗[αn∇f(u) + (1 − αn)∇f(yn)]. Using Lemmas 6 and 7, we see
that

Df (z, xn+1) = Df (z,P
f
C(zn)) ≤ Df (z, zn) = Vf (z,∇f(zn))

≤ Vf (z,∇f(zn)− αn(∇f(u)−∇f(z))

+ αn⟨∇f(u)−∇f(z), zn − z⟩
= Vf (z, αn∇f(u) + (1− αn)∇f(yn)− αn(∇f(u)−∇f(z))

+ αn⟨∇f(u)−∇f(z), zn − z⟩
= Vf (z, (1− αn)∇f(yn) + αn∇f(z))

+ αn⟨∇f(u)−∇f(z), zn − z⟩
≤ (1− αn)Vf (z,∇f(yn)) + αnVf (z,∇f(z))

+ αn⟨∇f(u)−∇f(z), zn − z⟩
= (1− αn)Df (z, yn) + αnDf (z, z) + αn⟨∇f(u)−∇f(z), zn − z⟩
≤ (1− αn)Df (z, xn) + αn⟨∇f(u)−∇f(z), zn − z⟩. (18)

Observe that

∥∇f(yn)−∇f(zn)∥ = αn∥∇f(yn)−∇f(u)∥ → 0 as n → ∞.

By the nature of f and ∇f , we obtain

lim
n→∞

∥yn − zn∥ = 0. (19)

It follows from (17) and (19) that

lim
n→∞

∥xn − zn∥ = 0. (20)

By Proposition 1 and equation (20), we can conclude that

lim sup
n→∞

⟨∇f(u)−∇f(z), zn − z⟩ = lim sup
n→∞

[⟨∇f(u)−∇f(z), zn − xn⟩
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+ ⟨∇f(u)−∇f(z), xn − z⟩] (21)

= lim sup
n→∞

⟨∇f(u)−∇f(z), xn − z⟩ ≤ 0.

Hence by Lemma 14 and inequalities (18) and (21), we get xn → z = PA(u) as
n → ∞.

Case II: Put {an} = {Df (z, xn)} and let there exist a subsequence {ni} of
{n} such that for all i ∈ N, ani ≤ ani+1. For some sufficiently large N and for all
n ≥ N , define a map τ : N → N by

τ(n) = {k ≤ n : ak ≤ ak+1}.

Then, it follows from Lemma 15 that the sequence τ(n) is non-decreasing with
τ(n) → ∞ as n → ∞ and aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1. Using the fact that
ατ(n) → 0 as τ(n) → ∞ and by equation (15), we obtain

P ∗
s

(
∥∇f(xτ(n))−∇f(Txτ(n))∥

)
→ 0.

Following similar argument as in Case I, we see that

lim
n→∞

∥xτ(n) − Txτ(n)∥ = 0.

Also,
lim sup
τ(n)→∞

⟨∇f(u)−∇f(z), xτ(n) − z⟩ ≤ 0.

It follows from equation (16) that

aτ(n)+1 ≤ aτ(n) + ατ(n)[⟨∇f(u)−∇f(z), xτ(n) − z⟩ − aτ(n)].

From the fact that aτ(n) ≤ aτ(n)+1 and aτ(n) > 0, the above inequalities give

aτ(n) ≤ ⟨∇f(u)−∇f(z), xτ(n) − z⟩ → 0 as τ(n) → ∞.

Thus, limτ(n)→∞ aτ(n) = limτ(n)→∞ aτ(n)+1 = 0. Since 0 ≤ an ≤ aτ(n)+1, it
implies that limn→∞ an = limn→∞Df (z, xn) = 0. Therefore, by Lemma 9, we
arrived at xn → z as n → ∞. Hence in view of the above two cases, we see that
the sequence {xn} converges strongly to z = PA(u) ∈ A. This completes the
proof. ◀

Corollary 1. Let f : E → (−∞,+∞] be a strongly coercive Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of int(domf) and
Ti : C → C for i=1,2,. . .,N be a finite family of Bregman nonexpansive mappings
such that A = ∩N

i=1Af (Ti) ̸= ∅. Let {xn} be a sequence defined by (12). Then
{xn} converges strongly to z = PA(u).
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Proof. Let the mapping in Definition 2 be an (α, β, γ, δ, ϵ, ζ)-generic gen-
eralized Bregman nonspreading mapping. Observe that (1, 0, 0,−1, 0, 0)-generic
generalized Bregman nonspreading mapping is a Bregman nonexpansive. Thus,
by Theorem 2 we see that the sequence {xn} converges strongly to z = PA(u).
This completes the proof. ◀

Corollary 2. Let f : E → (−∞,+∞] be a strongly coercive Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of int(domf)
and Ti : C → C for i=1,2,. . .,N be a finite family of Bregman nonspreading
mappings; i.e.,

Df (Tx, Ty) +Df (Ty, Tx) ≤ Df (Tx, y) +Df (Ty, x) ∀ x, y ∈ C.

Suppose that A = ∩N
i=1Af (Ti) ̸= ∅ and let {xn} be a sequence defined by (12).

Then {xn} converges strongly to z = Pf
A(u).

Proof. Observe that (1, 0,−1, 0,−1, 0)-generic generalized Bregman nonspread-
ing mapping is Bregman nonspreading. Thus, by Theorem 2 we see that the
sequence {xn} converges strongly to z = PA(u). This completes the proof. ◀

Corollary 3. Let f : E → (−∞,+∞] be a strongly coercive Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of int(domf) and
Ti : C → C for i=1,2,. . .,N be a finite family of generalized Bregman nonspread-
ing mappings; i.e. ∃ α, β, γ and δ ∈ R such that for all x, y ∈ C

αDf (Tx, Ty) + (1− α)Df (x, Ty) + γ{Df (Ty, Tx)−Df (Ty, x)}
≤ βDf (Tx, y) + (1− β)Df (x, y) + δ{Df (y, Tx)−Df (y, x)}.

Suppose that A = ∩N
i=1Af (Ti) ̸= ∅ and let {xn} be a sequence defined by (12).

Then {xn} converges strongly to z = PA(u).

Proof. Since an (α, β, γ, δ, ϵ, ζ)-generic generalized Bregman nonspreading
mapping is generalized Bregman nonspreading for α + β = −γ − δ = 1 with
α + β > 0 and α + β + γ + δ ≥ 0, it follows from Theorem 2 that the sequence
{xn} converges strongly to z = PA(u). This completes the proof. ◀

Corollary 4. Let C be a nonempty, closed and convex subset of a real Hilbert
space and Ti : C → C for i=1,2,. . .,N be a finite family of normally generalized
hybrid mappings such that A = ∩N

i=1Af (Ti) ̸= ∅. Let {xn} be a sequence defined
by (12). Then {xn} converges strongly to z = PA(u). where PA(u) is the metric
projection of C onto Af (T ).
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Proof. By Remark 1, we see that the generic generalized Bregmen nonspread-
ing mapping reduces to normally generalized hybrid mapping in Hilbert space,
i.e. there exist α1, β1, γ1 and δ1 ∈ R such that

α1∥Tx− Ty∥2 + β1∥x− Ty∥2 + γ1∥Tx− y∥2 + δ1∥x− y∥2 ≤ 0 ∀ x, y ∈ C, (22)

where α1 = α−ϵ, β1 = β+ϵ, γ1 = γ−ζ and δ1 = δ+ζ satisfying α1+β1 = α+β > 0
and α1 + β1 + γ1 + δ1 = α+ β + γ + δ ≥ 0. Thus, by Theorem 2 we see that the
sequence {xn} converges strongly to z = PA(u). This completes the proof. ◀

Corollary 5. Let C be a nonempty, closed and convex subset of a real Hilbert
space and Ti : C → C for i=1,2,. . .,N be a finite family of generalized hybrid
mappings such that A = ∩N

i=1Af (Ti) ̸= ∅. Let {xn} be a sequence defined by (12).
Then {xn} converges strongly to z = PA(u). where PA(u) is the metric projection
of C onto Af (T ).

Proof. Observe that from equation (22) it follows that if α1 + β1 = −γ1 −
δ1 = 1, then an (α1, β1, γ1, δ1)-normally generalized hybrid mapping becomes a
generalized hybrid mapping satisfying α1+β1 = α1+(1−α1) > 0 and α1+β1+
γ1 + δ1 = α1 + (1−α1) + γ1 + (−γ1 − 1) ≥ 0. It follows from 2 that the sequence
{xn} converges strongly to z = PA(u). This completes the proof. ◀

Here, we approximate a common fixed points of generic generalized Bregman
nonspreading mappings in Banach space by applying Theorem 2.

Corollary 6. Let f : E → (−∞,+∞] be a strongly coercive Legendre function
which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E. Let C be a nonempty, closed and convex subset of int(domf) and
Ti : C → C for i=1,2,. . .,N be a finite family of generic generalized Bregman
nonspreading mappings such that F = ∩N

i=1F (Ti) ̸= ∅. Let {xn} be a sequence
defined by (12). Then {xn} converges strongly to z = PF (u).

Proof. Since Ti for i = 1, 2, ..., N are generic generalized Bregman nonspread-
ing mappings with F = ∩N

i=1F (Ti) ̸= ∅, then by letting v ∈ F and replacing x
with v in (iii) of Definition 2, we have for any y ∈ C

αDf (v, Ty) + βDf (v, Ty) + γDf (v, y) + δDf (v, y) ≤ 0.

This implies
(α+ β)Df (v, Ty) ≤ −(γ + δ)Df (v, y).

Using (i) and (ii) of Definition 2, we get

Df (v, Ty) ≤ − (γ + δ)

(α+ β)
Df (v, y) ≤ Df (v, y).
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=⇒ Df (v, Ty) ≤ Df (v, y).

Thus, v ∈ Af (T ) and consequently F (T ) ⊂ Af (T ). Since Af (T ) ̸= ∅, it follows
from Theorem 2 that xn → z as n → 0, z ∈ Af (T ).
Since C is closed and {xn} converges strongly to z, it implies that z ∈ C. Using
the fact that z ∈ Af (T ) ∩ C, we see that

Df (z, Tz) ≤ Df (z, z) = 0.

This implies that z ∈ F (T ). In addition,

Df (u, z) = inf{Df (u, v) : v ∈ Af (T )} ≤ inf{Df (u, v) : v ∈ F (T )}.

Hence z = PF (u). This completes the proof. ◀
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