Azerbaijan Journal of Mathematics
V. 13, No 2, 2023, July
ISSN 2218-6816
https://doi.org/10.59849/2218-6816.2023.2.110

Generalized Keller Graph

M. Łysakowska

Abstract

Generalized Keller graph Γ_{d}^{k} is defined and its properties are investigated. Moreover, connections between Keller's conjecture and the size of a maximum clique of generalized Keller graph are discussed.

Key Words and Phrases: Keller graph, Keller's conjecture, maximum clique.
2010 Mathematics Subject Classifications: 05C15, 05C45, 05C99

1. Introduction

As the new approach to Keller's conjecture, that was stated in 1930 [6], which says that every cube tiling of the d-dimensional Euclidean space contains a pair of cubes that have a common $(d-1)$-dimensional face, in 1990 Corrádi and Sabó [2] defined Keller graph (a graph in which vertices are all vectors of the length d with entries from the set $\{0,1,2,3\}$ and two vertices are adjacent if and only if they differ by 2 in one coordinate and they are distinct in another coordinate) and showed that if the size of a maximum clique of it is equal to 2^{d}, then there exists a counterexample to Keller's conjecture in \mathbb{R}^{d}. Next, in 1992 Lagarias and Shor [9] found a maximum clique of the size 2^{10} in Keller graph for $d=10$, and a few years later Mackey [11] found such a clique for $d=8$. This implies that the size of a maximum clique of Keller graph is 2^{d} for $d \geq 8$. In 1940, Perron [12] showed that Keller's conjecture is true for $d \leq 6$. The result of Perron implies that the size of a maximum clique of Keller graphs for $d \leq 6$ is less than 2^{d}. In 2011, Debroni, Eblen, Langston, Myrvold, Shor and Weerapurage [3] showed that the size of a maximum clique of Keller graph for $d=7$ is 124 . Moreover, it is known that for $d=2,3,4,5,6$ the size of a maximum clique of Keller graph is $2,5,12,28,60$, respectively. In 2016, Jarnicki, Myrvold, Saltzman and Wagon [5], using computer calculations, investigated properties of Keller graph such as Hamiltonian, the independence number, the chromatic number, etc. In 2018,
M. Lysakowska [10] defined extended Keller graph, i.e. graph in which vertices are all vectors of the length d with entries from the set $\{0,1,2,3,4,5\}$ and two vertices are adjacent if and only if they differ by 3 in one coordinate and they are distinct in another coordinate, and overtly proved basic properties of this graph.

In this paper, generalized Keller graph Γ_{d}^{k} is defined, i.e. the graph in which vertices are all vectors of the length d with entries from the set $\{0,1, \ldots$, $2 k-1\}$ and two vertices are adjacent if they meet the appropriate conditions, and properties of these graphs are shown explicitly. In the last section, the conjecture about sizes of maximum cliques in Keller graphs is stated.

The result of Debroni, Elden, Langston, Myrvold, Shor and Weerapurage [3] showing that the size of maximum clique of Γ_{7}^{2} is equal to 124 implies that Keller's conjecture is true in dimension 7 for cubes with centers at points of the set $\left\{x=\left(x_{1}, \ldots, x_{7}\right): x_{i} \in \mathbb{Z} \cup \frac{1}{2} \mathbb{Z}\right\}$. In [7] Kisielewicz showed that Keller's conjecture in dimension 7 is true for cubes with centers at points of $\left\{x=\left(x_{1}, \ldots, x_{7}\right): x_{i} \in\right.$ $\left.\bigcup_{k=1}^{n} \frac{1}{k} \mathbb{Z}, n \geq 6\right\}$ and in [8] Kisielewicz and Lysakowska proved that Keller's conjecture in dimension 7 is also true for cubes with centers in points of $\{x=$ $\left.\left(x_{1}, \ldots, x_{7}\right): x_{i} \in \bigcup_{k=1}^{5} \frac{1}{k} \mathbb{Z}\right\}$. These results imply that the size of a maximum clique of generalized Keller graphs for $d=7$ and $k \geq 5$ is less than 2^{7}. Finally, in 2019, Brakensiek, Heule, Mackey and Narváez [1], using computer calculations, showed that the size of a maximum clique of the graphs $\Gamma_{7}^{3}, \Gamma_{7}^{4}$ and Γ_{7}^{5} is less than $2^{7}=128$ and this implies that Keller's conjecture is true for $d=7$.

2. Preliminaries

Generalized Keller graph $\Gamma_{d}^{k}=(V, E), k \geq 2, d \geq 2$, is defined by

$$
\begin{gathered}
V=\left\{v=\left(v_{1}, \ldots, v_{d}\right): v_{i} \in \mathbb{Z}_{2 k}\right\}, \\
E=\left\{\{u, v\}: \exists i \quad u_{i}-v_{i} \equiv k(\bmod 2 k) \exists j \neq i \quad u_{j} \neq v_{j}\right\} .
\end{gathered}
$$

It is easily seen that the graph Γ_{d}^{k} has $(2 k)^{d}$ vertices. Moreover, an automorphisms group of Γ_{d}^{k} is formed by bijections $f: V\left(\Gamma_{d}^{k}\right) \rightarrow V\left(\Gamma_{d}^{k}\right)$ and permutations $\sigma:\{1, \ldots, d\} \rightarrow\{1, \ldots, d\}$ such that for all vertices $u=\left(u_{1}, \ldots, u_{d}\right), v=$ $\left(v_{1}, \ldots, v_{d}\right) \in V\left(\Gamma_{d}^{k}\right)$ the following conditions are satisfied: for every $i \in\{1, \ldots, d\}$

- $u_{i}-v_{i} \equiv k(\bmod 2 k)$ if and only if $f(u)_{\sigma(i)}-f(v)_{\sigma(i)} \equiv k(\bmod 2 k)$;
- $u_{i}=v_{i}$ if and only if $f(u)_{\sigma(i)}=f(v)_{\sigma(i)}$.

It can be also noticed that the graph Γ_{d}^{k} is vertex transitive and, as a consequence, it is regular.

Let us see that degree Δ of Γ_{d}^{k} is equal to $(2 k)^{d}-(2 k-1)^{d}-d$. Indeed, let $v=\left(v_{1}, \ldots, v_{d}\right) \in V$. Then there is exactly d vertices $u=\left(u_{1}, \ldots, u_{d}\right) \in V$ such that $u_{i}-v_{i} \equiv k(\bmod 2 k)$ for some $i \in\{1, \ldots, d\}$ and $u_{j}=v_{j}$ for all $j \neq i$, and there is exactly $(2 k-1)^{d}$ vertices $w=\left(w_{1}, \ldots, w_{d}\right) \in V$ such that $v_{i} \not \equiv w_{i}(\bmod 2 k)$ for all $i \in\{1, \ldots, d\}$. This implies that the graph Γ_{d}^{k} has $\frac{1}{2}(2 k)^{d}\left((2 k)^{d}-(2 k-1)^{d}-d\right)$ edges.

Figure 1
Generalized Keller graph Γ_{2}^{3}
A family of vertices $W \subseteq V\left(\Gamma_{d}^{k}\right)$ is called a simple class if for every two vertices $u=\left(u_{1}, \ldots, u_{d}\right), v=\left(v_{1}, \ldots, v_{d}\right) \in W$ we have $u_{i}=v_{i}$ or $u_{i}=-v_{i}$ for all $i \in\{1, \ldots, d\}$. If two vertices from a simple class are neighbours, they are said to be simple neighbours. Two vertices $u=\left(u_{1}, \ldots, u_{d}\right), v=\left(v_{1}, \ldots, v_{d}\right) \in V$ are called dichotomous if there is an $i \in\{1, \ldots, d\}$ such that $u_{i}-v_{i} \equiv k(\bmod 2 k)$ and they are said to be a twin pair if they are dichotomous and there are $d-1$ indexes $j \in\{1, \ldots, d\}$ such that $u_{j}=v_{j}$.

For example, in the graph Γ_{5}^{4} vertices 05721 and 05321 form a twin pair, as in the third coordinate they differ by 4 and they are equal in the rest coordinates. In the graph Γ_{2}^{3}, for instance, the family of vertices $\{11,14,41,44\}$ is a simple class; the vertex 00 has nine neighbours: $13,23,31,32,33,34,35,43,45$, whereby 33 is its simple neighbour.

In the graph Γ_{d}^{k} with each vertex $w=\left(w_{1}, \ldots, w_{d}\right) \in V$ a vector $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right) \in\{+,-\}^{d}$ defined by

$$
\varepsilon_{i}= \begin{cases}+, & \text { if } w_{i} \in\{0,1, \ldots, k-1\} \\ -, & \text { if } w_{i} \in\{k, k+1, \ldots, 2 k-1\}\end{cases}
$$

is associated. Vectors ε are called codes.
To simplify notation, we will often omit brackets and write, for example, a code +--+ and a vertex $w_{1} \ldots w_{d}$ instead of $\varepsilon=(+,-,-,+)$ and a vertex $w=\left(w_{1}, \ldots, w_{d}\right)$, respectively.

All arithmetic in the paper is done modulo $2 k$. The number of vertices and the number of edges of Γ_{d}^{k} are denoted by n_{v} and n_{e}, correspondingly. Moreover, the independence number and the chromatic number are denoted, in the traditional way, by α and χ, respectively.

Let $A \subseteq\left(\mathbb{Z}_{2 k}\right)^{m}$ and $v \in\left(\mathbb{Z}_{2 k}\right)^{n}$. Then the set $A v$ is defined by

$$
A v=\left\{w v=\left(w_{1}, \ldots, w_{m}, v_{1}, \ldots, v_{n}\right): w \in A\right\} .
$$

3. Properties of Γ_{d}^{k}

In this section some basic properties of generalized Keller graph are presented.
In 1952, Dirac [4] proved that a simple graph is Hamiltonian if every vertex of it has degree greater or equal to $n_{v} / 2$. This implies that generalized Keller graph Γ_{d}^{k} is Hamiltonian for some k and d, for example, for $k=2$ and $d \geq 3$, $k=3$ and $d \geq 4$. In the proof of Theorem 1 a Hamiltonian cycle in all graphs Γ_{d}^{k} is given explicitly.

Theorem 1. All generalized Keller graphs are Hamiltonian.
Proof. It is easily seen that the cycle

$$
\begin{aligned}
& ((0,0),(\mathrm{k}, 2 \mathrm{k}-1),(0,1),(\mathrm{k}, 2 \mathrm{k}-2),(0,2),(\mathrm{k}, 2 \mathrm{k}-3), \ldots,(0, \mathrm{k}-2),(\mathrm{k}, \mathrm{k}+1),(0, \mathrm{k}-1),(\mathrm{k}, 0), \\
& (0, \mathrm{k}),(\mathrm{k}, 1),(0, \mathrm{k}+1),(\mathrm{k}, 2), \ldots,(0,2 \mathrm{k}-2),(\mathrm{k}, \mathrm{k}-1),(0,2 \mathrm{k}-1),(\mathrm{k}, \mathrm{k}),(1,0),(\mathrm{k}+1,2 \mathrm{k}-1), \\
& (1,1),(\mathrm{k}+1,2 \mathrm{k}-2), \ldots,(1, \mathrm{k}-2),(\mathrm{k}+1, \mathrm{k}+1),(1, \mathrm{k}-1),(\mathrm{k}+1,0),(1, \mathrm{k}),(\mathrm{k}+1,1),(1, \mathrm{k}+1), \\
& (\mathrm{k}+1,2), \ldots,(\mathrm{k}+1, \mathrm{k}-1),(1,2 \mathrm{k}-1),(\mathrm{k}+1, \mathrm{k}), \ldots \ldots \ldots \ldots \ldots \ldots,(\mathrm{k}-1,0),(2 \mathrm{k}-1,2 \mathrm{k}-1), \\
& (\mathrm{k}-1,1),(2 \mathrm{k}-1,2 \mathrm{k}-2), \ldots,(\mathrm{k}-1, \mathrm{k}-2),(2 \mathrm{k}-1, \mathrm{k}+1),(\mathrm{k}-1, \mathrm{k}-1),(2 \mathrm{k}-1,0),(\mathrm{k}-1, \mathrm{k}), \\
& (2 \mathrm{k}-1,1),(\mathrm{k}-1, \mathrm{k}+1),(2 \mathrm{k}-1,2), \ldots,(2 \mathrm{k}-1, \mathrm{k}-1),(\mathrm{k}-1,2 \mathrm{k}-1),(2 \mathrm{k}-1, \mathrm{k}))
\end{aligned}
$$

is a Hamiltonian cycle in Γ_{2}^{k}. Let us denote this cycle by H. Then all vertices of the graph $\Gamma_{d}^{k}, d \geq 3$, can be arranged into a cycle in the following way

$$
H v_{1}, H v_{2}, \ldots, H v_{(2 k)^{d-2}}
$$

where $v_{i} \in \Gamma_{d-2}^{k}, i=1,2, \ldots,(2 k)^{d-2}$, while Γ_{1}^{k} denotes $\mathbb{Z}_{2 k}$. As a consequence we obtain a Hamiltonian cycle in Γ_{d}^{k}.

Next theorem shows that all generalized Keller graphs Γ_{d}^{k} can be edge-colored in $\Delta=(2 k)^{d}-(2 k-1)^{d}-d$ colors and in the proof of Theorem 2 the manner of such coloring is given.

Theorem 2. All generalized Keller graphs are class 1.
Proof. Let S be the family of all neighbours of the vertex $v_{0}=00 \ldots 0$, let S_{p} be the family of all simple neighbours of v_{0}, and let $S_{s}=S \backslash S_{p}$. Then sets S and S_{p} have $(2 k)^{d}-(2 k-1)^{d}-d=\Delta$ and $2^{d}-d-1$ elements, respectively. Moreover, if $s \in S_{p}$, then $s=-s$, and if $s \in S_{s}$, then $-s \in S_{s}$. Let us notice also that as the graph Γ_{d}^{k} is vertex transitive, the set of all neighbours of every vertex $v \in V\left(\Gamma_{d}^{k}\right)$ has the form

$$
v+S=\{v+s: s \in S\}
$$

For every $s \in S_{s}$ and $v \in V$ let T_{v}^{s} be defined by

$$
T_{v}^{s}=\left\{v+m s: m \in \mathbb{Z}_{2 k}\right\}
$$

Then

$$
\begin{aligned}
& T_{v}^{-s}=\{v, v-s, v-2 s, \ldots, v-(2 k-2) s, v-(2 k-1) s\}= \\
& =\{v, v+(2 k-1) s, v+(2 k-2) s, \ldots, v+2 s, v+s\}=T_{v}^{s}
\end{aligned}
$$

Additionally, if $w \in T_{v}^{s}$, then $w=v+m s$ for some $m \in \mathbb{Z}_{2 k}$. Thus $v=w-m s \in$ $T_{w}^{-s}=T_{w}^{s}$. As a result, for every $s \in S_{s}$ we obtain a partition of vertices of Γ_{d}^{k} into $(2 k)^{d-1}$ pairwise disjoint classes $\left\{v+m s: m \in \mathbb{Z}_{2 k}\right\}$ with $2 k$ elements in each of them.

Edges of the graph Γ_{d}^{k} are colored in the following way:

- each color $s \in S_{s}$ is put on the edge between v and $v+s$;
- each color $s \in S_{p}$ is put on edges $\{v, v+s\},\{v+2 s, v+3 s\}, \ldots$, $\{v+(2 k-2) s, v+(2 k-1) s\}$.

Then

$$
\frac{1}{2}\left(2^{d}-d-1\right) \cdot(2 k)^{d}+\frac{1}{2}\left((2 k)^{d}-(2 k-1)^{d}-d-\left(2^{d}-d-1\right)\right) \cdot(2 k)^{d}=
$$

$$
=\frac{(2 k)^{d}}{2}\left((2 k)^{d}-(2 k-1)^{d}-d\right)=\frac{1}{2} n_{v} \cdot \Delta=n_{e}
$$

edges are colored. Therefore in this way all edges of Γ_{d}^{k} are colored.
Now we will show that every edge of Γ_{d}^{k} is colored exactly once. Let us notice that if the edge $\{u, v\}$ has color s, then $u-v= \pm s$. If $s \in S_{p}$, then $s=-s$ and, as a consequence, the edge $\{u, v\}$ has exactly one color. If $s \in S_{s}$, then if the edge $\{u, v\}$ has another color apart from s it must be $-s$. Then the edge $\{u, v\}$ has to be at the same time one edge from sets

$$
\{\{v, v+s\},\{v+2 s, v+3 s\}, \ldots,\{v+(2 k-2) s, v+(2 k-1) s\}\}
$$

and

$$
\begin{gathered}
\{\{v, v-s\},\{v-2 s, v-3 s\}, \ldots,\{v-(2 k-2) s, v-(2 k-1) s\}\}= \\
=\{\{v, v+(2 k-1) s\},\{v+(2 k-2) s, v+(2 k-3) s\}, \ldots,\{v+2 s, v+s\}\},
\end{gathered}
$$

what is impossible. As a consequence, every edge of the graph Γ_{d}^{k} has exactly one color.

Finally we show that such coloring is proper. Indeed, if the edge $\{u, v\}$ has color s, then $u-v= \pm s$. If $s \in S_{p}$, then $s=-s$ and the color is chosen uniquely. If $s \in S_{s}$, then $u=w+m s$, where $w \in T_{v}^{s}, m \in \mathbb{Z}_{2 k}$. If m is even, then $v=w+(m+1) s$, and if m is odd, then $v=w+(m-1) s$. In both cases the choice of v is unique. As a result, the coloring is proper.

In [5], Jarnicki, Myrvold, Saltzman and Wagon showed that for $k=2$ the independence number of Keller graph is 2^{d} for $d \geq 3$ and it is 5 for $d=2$. The next theorem shows that for $k \geq 3$ the independence number of all Keller graphs Γ_{d}^{k} is k^{d}.

Theorem 3. For $k \geq 3$ the independence number of all generalized Keller graphs Γ_{d}^{k} is k^{d}.

Proof. For $k=3$ and $d=2$ it is not too hard to check that $\alpha\left(\Gamma_{2}^{3}\right)=3^{2}=9$ and there are two kinds of maximum independent sets in Γ_{2}^{3} :

1. four twin pairs and one additional vertex which is not dichotomous with all of them; each such a set is isomorphic with

$$
00,03,01,04,02,12,42,22,52
$$

2. all nine vertices are not pairwise dichotomous; each such a set contains vertices with the same code and is isomorphic with

$$
00,01,02,10,11,12,20,21,22 .
$$

Moreover, it is also quite easy to check that $\alpha\left(\Gamma_{3}^{3}\right)=3^{3}, \alpha\left(\Gamma_{2}^{4}\right)=4^{2}, \alpha\left(\Gamma_{2}^{5}\right)=5^{2}$ and every maximum independent set in the graphs $\Gamma_{3}^{3}, \Gamma_{2}^{4}, \Gamma_{2}^{5}$ is isomorphic with the set of all vertices with the same code, i.e.

- in Γ_{3}^{3} all maximum independent sets are isomorphic with $000,001,010,100,002,020,200,012,102,120,021,201,210,111$,

$$
222,112,121,211,221,212,122,110,101,011,220,202,022
$$

- in Γ_{2}^{4} all maximum independent sets are isomorphic with

$$
00,11,22,33,01,10,02,20,03,30,12,21,13,31,23,32
$$

- in Γ_{2}^{5} all maximum independent sets are isomorphic with

$$
00,01,02,03,04,10,11,12,13,14,20,21
$$

$$
22,23,24,30,31,32,33,34,40,41,42,43,44
$$

Now, let us notice that the set of all vertices of Γ_{d}^{k} with the same code is an independent set with k^{d} elements.

Let us see that for $k=3, d \geq 3$ and $k \geq 4, d \geq 2$ a maximum independent set does not contain any twin pair. In fact, suppose that M is a maximum independent set in Γ_{d}^{k} with l twin pairs. Then all these twin pairs are not dichotomous with each other. Thus each such a pair lies in another simple class. Without loss of generality, we can assume that one vertex in every twin pair has the code $+\cdots+$. It is easy to see that a maximum independent set containing these twin pairs can be obtained by adding to them all vertices with the code $+\cdots+$ which are not dichotomous with them. Let m_{i} be a non-negative integer denoting the number of twin pairs that are dichotomous in position $i, i \in\{1, \ldots, d\}$, $\sum_{i=1}^{d} m_{i}=l$. Then the set M has

$$
\prod_{i=1}^{d}\left(k-m_{i}\right)+2 l<k^{d}
$$

elements, what is a contradiction.

As a maximium independent set does not contain any twin pair, every element of it has to lie in other simple class. As we have k^{d} different simple classes and vertices with the same code form independent set which has a property that each of its elements lies in other simple class, a maximum independent set in Γ_{d}^{k} has k^{d} elements.

Theorem 4. The chromatic number of all generalized Keller graphs is 2^{d}.
Proof. All vertices of the graph Γ_{d}^{k} can be put into the array with 2^{d} rows and k^{d} columns such that each row of the array contains vertices with the same code and each column contains all vertices from the same simple class. Then all k^{d} vertices in every row of the array are independent. Thus $\chi\left(\Gamma_{d}^{k}\right) \leq 2^{d}$.

On the other hand,

$$
\frac{n_{v}}{\alpha\left(\Gamma_{d}^{k}\right)}=\frac{(2 k)^{d}}{k^{d}}=2^{d}
$$

implies $\chi\left(\Gamma_{d}^{k}\right) \geq 2^{d}$. As a result, $\chi\left(\Gamma_{d}^{k}\right)=2^{d}$.

PROPERTIES	Γ_{d}^{k}
number of vertices n_{v}	$(2 k)^{d}$
number of edges v_{e}	$\frac{1}{2}(2 k)^{d}\left((2 k)^{d}-(2 k-1)^{d}-d\right)$
degree Δ	$(2 k)^{d}-(2 k-1)^{d}-d$
the independence number α	5 for $k=2$ and $d=2$ k^{d} for the rest k and d
the chromatic number χ	2^{d}
Hamiltonian	Yes
class 1	Yes

Table 1
Properties of generalized Keller graphs Γ_{d}^{k}

4. Open question

It is easy to check that the size of maximum clique is:

- 2 for $\Gamma_{2}^{3}, \Gamma_{2}^{4}, \Gamma_{2}^{5}$; there are two kinds of such cliques and both of them are ismorophic with such cliques in Γ_{2}^{2} :

$$
00,33 \quad \text { or } \quad 00,13 \text {; }
$$

- 5 for Γ_{3}^{3}; all these cliques are isomorphic with such a clique in Γ_{3}^{2} :

$$
000,032,320,203,222
$$

- 12 for Γ_{4}^{3}; all these cliques are isomorphic with such a clique in Γ_{4}^{2} :
$0000,3023,1203,2331,0021,2003,0231,2011,3233,1211,3210,1323$.

These results enforce us to state the following conjecture:
Conjecture 1. The size of a maximum clique of generalized Keller graphs Γ_{d}^{k} is:

- 2 for $d=2, k \geq 6$,
- 5 for $d=3, k \geq 4$,
- 12 for $d=4, k \geq 4$,
- 28 for $d=5, k \geq 3$,
- 60 for $d=6, k \geq 3$,
- 124 for $d=7, k \geq 3$.

Additionally, all these maximum cliques are isomorphic with maximum cliques of $\Gamma_{d}^{2}, d=2,3,4,5,6,7$, respectively.

\mathbf{d}	the size of a maximum clique of Γ_{d}^{k}
$d=2$	2 for $k=2,3,4$ $<2^{2}=4$ for $k \geq 5$
$d=3$	5 for $k=2,3,4$ $<2^{3}=8$ for $k \geq 5$
$d=4$	12 for $k=2,3$ $<2^{4}=16$ for $k \geq 4$
$d=5$	28 for $k=2$ $<2^{5}=32$ for $k \geq 3$
$d=6$	60 for $k=2$ $<2^{6}=64$ for $k \geq 3$
$d=7$	124 for $k=2$ $<2^{7}=128$ for $k \geq 3$
$d \geq 8$	2^{d} for $k \geq 2$

Table 2
The size of a maximum clique of generalized Keller graphs Γ_{d}^{k}

References

[1] J. Brakensiek, M. Heule, J. Mackey, D. Narváez, The Resolution of Keller's Conjecture, IJCAR, 2020, 48-65.
[2] K. Corrádi, S. Szabó, A combinatorial approach for Keller's conjecture, Period. Math. Hung., 21, 1990, 95-100.
[3] J. Debroni, Aj.D. Eblen, M.A. Langston, W. Myrvold, P.W. Shor, D. Weerapurage, A complete resolution of the Keller maximum clique problem, SODA, 2011, 129-135.
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2, 1952, 69-81.
[5] W. Jarnicki, W. Myrvold, P. Saltzman, S. Wagon, Properties, Proved and Conjectured of Keller, Mycielski, and Queen Graphs, ARS Mathematics Contemporanea, 13, 2017, 427-460.
[6] O.H. Keller, Über die lückenlose Erfülung des Raumes Würfeln, J. Reine Angew. Math., 163, 1930, 231-248.
[7] A.P. Kisielewicz, Rigid polyboxes and Keller's conjecture, Adv. Geom., 17, 2017, 203-230.
[8] A.P. Kisielewicz, M. Łysakowska, On Keller's Conjecture in Dimension Seven, Electronic J. Comb., 22(1), 2015, 1-44.
[9] J.C. Lagarias, P.W. Shor, Keller's cube-tiling conjecture is false in high dimensions, Bull. Amer. Math. Soc., 27, 1992, 279-287.
[10] M. Łysakowska, Extended Keller graph and its properties, Quaestiones Mathematicae, 42, 2018, 1-10.
[11] J. Mackey, A cube tiling of dimension eight with no facesharing, Discr. Comput. Geom., 28, 2002, 275-279.
[12] O. Perron, Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel I, II, Math. Z., 46, 1940, 1-26, 161-180.

Magdalena Łysakowska
Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra ul. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
E-mail: M.Lysakowska@wmie.uz.zgora.pl
Received 04 August 2022
Accepted 13 October 2022

