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Generalized Keller Graph

M.  Lysakowska

Abstract. Generalized Keller graph Γk
d is defined and its properties are investigated.

Moreover, connections between Keller’s conjecture and the size of a maximum clique of
generalized Keller graph are discussed.
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1. Introduction

As the new approach to Keller’s conjecture, that was stated in 1930 [6], which
says that every cube tiling of the d-dimensional Euclidean space contains a pair
of cubes that have a common (d− 1)-dimensional face, in 1990 Corrádi and Sabó
[2] defined Keller graph (a graph in which vertices are all vectors of the length
d with entries from the set {0, 1, 2, 3} and two vertices are adjacent if and only
if they differ by 2 in one coordinate and they are distinct in another coordinate)
and showed that if the size of a maximum clique of it is equal to 2d, then there
exists a counterexample to Keller’s conjecture in Rd. Next, in 1992 Lagarias and
Shor [9] found a maximum clique of the size 210 in Keller graph for d = 10, and
a few years later Mackey [11] found such a clique for d = 8. This implies that
the size of a maximum clique of Keller graph is 2d for d ≥ 8. In 1940, Perron [12]
showed that Keller’s conjecture is true for d ≤ 6. The result of Perron implies
that the size of a maximum clique of Keller graphs for d ≤ 6 is less than 2d.
In 2011, Debroni, Eblen, Langston, Myrvold, Shor and Weerapurage [3] showed
that the size of a maximum clique of Keller graph for d = 7 is 124. Moreover,
it is known that for d = 2, 3, 4, 5, 6 the size of a maximum clique of Keller graph
is 2, 5, 12, 28, 60, respectively. In 2016, Jarnicki, Myrvold, Saltzman and Wagon
[5], using computer calculations, investigated properties of Keller graph such as
Hamiltonian, the independence number, the chromatic number, etc. In 2018,
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M.  Lysakowska [10] defined extended Keller graph, i.e. graph in which vertices
are all vectors of the length d with entries from the set {0, 1, 2, 3, 4, 5} and two
vertices are adjacent if and only if they differ by 3 in one coordinate and they are
distinct in another coordinate, and overtly proved basic properties of this graph.

In this paper, generalized Keller graph Γk
d is defined, i.e. the graph in

which vertices are all vectors of the length d with entries from the set {0, 1, . . . ,
2k−1} and two vertices are adjacent if they meet the appropriate conditions, and
properties of these graphs are shown explicitly. In the last section, the conjecture
about sizes of maximum cliques in Keller graphs is stated.

The result of Debroni, Elden, Langston, Myrvold, Shor and Weerapurage
[3] showing that the size of maximum clique of Γ2

7 is equal to 124 implies that
Keller’s conjecture is true in dimension 7 for cubes with centers at points of the set
{x = (x1, . . . , x7) : xi ∈ Z∪ 1

2Z}. In [7] Kisielewicz showed that Keller’s conjecture
in dimension 7 is true for cubes with centers at points of {x = (x1, . . . , x7) : xi ∈⋃n

k=1
1
kZ, n ≥ 6} and in [8] Kisielewicz and  Lysakowska proved that Keller’s

conjecture in dimension 7 is also true for cubes with centers in points of {x =
(x1, . . . , x7) : xi ∈

⋃5
k=1

1
kZ}. These results imply that the size of a maximum

clique of generalized Keller graphs for d = 7 and k ≥ 5 is less than 27. Finally, in
2019, Brakensiek, Heule, Mackey and Narváez [1], using computer calculations,
showed that the size of a maximum clique of the graphs Γ3

7, Γ4
7 and Γ5

7 is less
than 27 = 128 and this implies that Keller’s conjecture is true for d = 7.

2. Preliminaries

Generalized Keller graph Γk
d = (V,E), k ≥ 2, d ≥ 2, is defined by

V = {v = (v1, . . . , vd) : vi ∈ Z2k},

E = {{u, v} : ∃i ui − vi ≡ k (mod 2k) ∃j ̸= i uj ̸= vj}.

It is easily seen that the graph Γk
d has (2k)d vertices. Moreover, an auto-

morphisms group of Γk
d is formed by bijections f : V (Γk

d) → V (Γk
d) and permuta-

tions σ : {1, . . . , d} → {1, . . . , d} such that for all vertices u = (u1, . . . , ud), v =
(v1, . . . , vd) ∈ V (Γk

d) the following conditions are satisfied: for every i ∈ {1, . . . , d}

� ui − vi ≡ k (mod 2k) if and only if f(u)σ(i) − f(v)σ(i) ≡ k (mod 2k);

� ui = vi if and only if f(u)σ(i) = f(v)σ(i).

It can be also noticed that the graph Γk
d is vertex transitive and, as a consequence,

it is regular.
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Let us see that degree ∆ of Γk
d is equal to (2k)d − (2k − 1)d − d. Indeed,

let v = (v1, . . . , vd) ∈ V . Then there is exactly d vertices u = (u1, . . . , ud) ∈ V
such that ui − vi ≡ k (mod 2k) for some i ∈ {1, . . . , d} and uj = vj for all
j ̸= i, and there is exactly (2k − 1)d vertices w = (w1, . . . , wd) ∈ V such that
vi ̸≡ wi (mod 2k) for all i ∈ {1, . . . , d}. This implies that the graph Γk

d has
1
2(2k)d((2k)d − (2k − 1)d − d) edges.

Figure 1

Generalized Keller graph Γ3
2

A family of vertices W ⊆ V (Γk
d) is called a simple class if for every two

vertices u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ W we have ui = vi or ui = −vi for all
i ∈ {1, . . . , d}. If two vertices from a simple class are neighbours, they are said
to be simple neighbours. Two vertices u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ V are
called dichotomous if there is an i ∈ {1, . . . , d} such that ui − vi ≡ k (mod 2k)
and they are said to be a twin pair if they are dichotomous and there are d− 1
indexes j ∈ {1, . . . , d} such that uj = vj .

For example, in the graph Γ4
5 vertices 05721 and 05321 form a twin pair, as in

the third coordinate they differ by 4 and they are equal in the rest coordinates.
In the graph Γ3

2, for instance, the family of vertices {11, 14, 41, 44} is a simple
class; the vertex 00 has nine neighbours: 13, 23, 31, 32, 33, 34, 35, 43, 45, whereby
33 is its simple neighbour.
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In the graph Γk
d with each vertex w = (w1, . . . , wd) ∈ V a vector

ε = (ε1, . . . , εd) ∈ {+,−}d defined by

εi =

{
+, if wi ∈ {0, 1, . . . , k − 1},
−, if wi ∈ {k, k + 1, . . . , 2k − 1}

is associated. Vectors ε are called codes.
To simplify notation, we will often omit brackets and write, for example, a

code + − −+ and a vertex w1 . . . wd instead of ε = (+,−,−,+) and a vertex
w = (w1, . . . , wd), respectively.

All arithmetic in the paper is done modulo 2k. The number of vertices and the
number of edges of Γk

d are denoted by nv and ne, correspondingly. Moreover, the
independence number and the chromatic number are denoted, in the traditional
way, by α and χ, respectively.

Let A ⊆ (Z2k)m and v ∈ (Z2k)n. Then the set Av is defined by

Av = {wv = (w1, . . . , wm, v1, . . . , vn) : w ∈ A}.

3. Properties of Γk
d

In this section some basic properties of generalized Keller graph are presented.
In 1952, Dirac [4] proved that a simple graph is Hamiltonian if every vertex

of it has degree greater or equal to nv/2. This implies that generalized Keller
graph Γk

d is Hamiltonian for some k and d, for example, for k = 2 and d ≥ 3,
k = 3 and d ≥ 4. In the proof of Theorem 1 a Hamiltonian cycle in all graphs Γk

d

is given explicitly.

Theorem 1. All generalized Keller graphs are Hamiltonian.

Proof. It is easily seen that the cycle

((0,0),(k,2k-1),(0,1),(k,2k-2),(0,2),(k,2k-3),. . . ,(0,k-2),(k,k+1),(0,k-1),(k,0),

(0,k),(k,1),(0,k+1),(k,2),. . . ,(0,2k-2),(k,k-1),(0,2k-1),(k,k),(1,0),(k+1,2k-1),

(1,1),(k+1,2k-2),. . . ,(1,k-2),(k+1,k+1),(1,k-1),(k+1,0),(1,k),(k+1,1),(1,k+1),

(k+1,2),. . . ,(k+1,k-1),(1,2k-1),(k+1,k),. . . . . . . . . . . . . . . . . . ,(k-1,0),(2k-1,2k-1),

(k-1,1),(2k-1,2k-2),. . . ,(k-1,k-2),(2k-1,k+1),(k-1,k-1),(2k-1,0),(k-1,k),

(2k-1,1),(k-1,k+1),(2k-1,2),. . . ,(2k-1,k-1),(k-1,2k-1),(2k-1,k))
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is a Hamiltonian cycle in Γk
2. Let us denote this cycle by H. Then all vertices of

the graph Γk
d, d ≥ 3, can be arranged into a cycle in the following way

Hv1, Hv2, . . . ,Hv(2k)d−2 ,

where vi ∈ Γk
d−2, i = 1, 2, . . . , (2k)d−2, while Γk

1 denotes Z2k. As a consequence

we obtain a Hamiltonian cycle in Γk
d. ◀

Next theorem shows that all generalized Keller graphs Γk
d can be edge-colored

in ∆ = (2k)d − (2k− 1)d − d colors and in the proof of Theorem 2 the manner of
such coloring is given.

Theorem 2. All generalized Keller graphs are class 1.

Proof. Let S be the family of all neighbours of the vertex v0 = 00 . . . 0, let
Sp be the family of all simple neighbours of v0, and let Ss = S \ Sp. Then sets
S and Sp have (2k)d − (2k − 1)d − d = ∆ and 2d − d − 1 elements, respectively.
Moreover, if s ∈ Sp, then s = −s, and if s ∈ Ss, then −s ∈ Ss. Let us notice also
that as the graph Γk

d is vertex transitive, the set of all neighbours of every vertex
v ∈ V (Γk

d) has the form
v + S = {v + s : s ∈ S}.

For every s ∈ Ss and v ∈ V let T s
v be defined by

T s
v = {v + ms : m ∈ Z2k}.

Then
T−s
v = {v, v − s, v − 2s, . . . , v − (2k − 2)s, v − (2k − 1)s} =

= {v, v + (2k − 1)s, v + (2k − 2)s, . . . , v + 2s, v + s} = T s
v .

Additionally, if w ∈ T s
v , then w = v +ms for some m ∈ Z2k. Thus v = w−ms ∈

T−s
w = T s

w. As a result, for every s ∈ Ss we obtain a partition of vertices of Γk
d

into (2k)d−1 pairwise disjoint classes {v+ms : m ∈ Z2k} with 2k elements in each
of them.

Edges of the graph Γk
d are colored in the following way:

� each color s ∈ Ss is put on the edge between v and v + s;

� each color s ∈ Sp is put on edges {v, v + s}, {v + 2s, v + 3s}, . . . ,
{v + (2k − 2)s, v + (2k − 1)s}.

Then

1

2
(2d − d− 1) · (2k)d +

1

2
((2k)d − (2k − 1)d − d− (2d − d− 1)) · (2k)d =
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=
(2k)d

2
((2k)d − (2k − 1)d − d) =

1

2
nv · ∆ = ne

edges are colored. Therefore in this way all edges of Γk
d are colored.

Now we will show that every edge of Γk
d is colored exactly once. Let us notice

that if the edge {u, v} has color s, then u− v = ±s. If s ∈ Sp, then s = −s and,
as a consequence, the edge {u, v} has exactly one color. If s ∈ Ss, then if the
edge {u, v} has another color apart from s it must be −s. Then the edge {u, v}
has to be at the same time one edge from sets

{{v, v + s}, {v + 2s, v + 3s}, . . . , {v + (2k − 2)s, v + (2k − 1)s}}

and

{{v, v − s}, {v − 2s, v − 3s}, . . . , {v − (2k − 2)s, v − (2k − 1)s}} =

= {{v, v + (2k − 1)s}, {v + (2k − 2)s, v + (2k − 3)s}, . . . , {v + 2s, v + s}},

what is impossible. As a consequence, every edge of the graph Γk
d has exactly

one color.

Finally we show that such coloring is proper. Indeed, if the edge {u, v} has
color s, then u− v = ±s. If s ∈ Sp, then s = −s and the color is chosen uniquely.
If s ∈ Ss, then u = w + ms, where w ∈ T s

v , m ∈ Z2k. If m is even, then
v = w + (m + 1)s, and if m is odd, then v = w + (m − 1)s. In both cases the
choice of v is unique. As a result, the coloring is proper. ◀

In [5], Jarnicki, Myrvold, Saltzman and Wagon showed that for k = 2 the
independence number of Keller graph is 2d for d ≥ 3 and it is 5 for d = 2. The
next theorem shows that for k ≥ 3 the independence number of all Keller graphs
Γk
d is kd.

Theorem 3. For k ≥ 3 the independence number of all generalized Keller graphs
Γk
d is kd.

Proof. For k = 3 and d = 2 it is not too hard to check that α(Γ3
2) = 32 = 9

and there are two kinds of maximum independent sets in Γ3
2:

1. four twin pairs and one additional vertex which is not dichotomous with all
of them; each such a set is isomorphic with

00, 03, 01, 04, 02, 12, 42, 22, 52;
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2. all nine vertices are not pairwise dichotomous; each such a set contains
vertices with the same code and is isomorphic with

00, 01, 02, 10, 11, 12, 20, 21, 22.

Moreover, it is also quite easy to check that α(Γ3
3) = 33, α(Γ4

2) = 42, α(Γ5
2) = 52

and every maximum independent set in the graphs Γ3
3, Γ4

2, Γ5
2 is isomorphic with

the set of all vertices with the same code, i.e.

� in Γ3
3 all maximum independent sets are isomorphic with

000, 001, 010, 100, 002, 020, 200, 012, 102, 120, 021, 201, 210, 111,

222, 112, 121, 211, 221, 212, 122, 110, 101, 011, 220, 202, 022;

� in Γ4
2 all maximum independent sets are isomorphic with

00, 11, 22, 33, 01, 10, 02, 20, 03, 30, 12, 21, 13, 31, 23, 32;

� in Γ5
2 all maximum independent sets are isomorphic with

00, 01, 02, 03, 04, 10, 11, 12, 13, 14, 20, 21,

22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44.

Now, let us notice that the set of all vertices of Γk
d with the same code is an

independent set with kd elements.
Let us see that for k = 3, d ≥ 3 and k ≥ 4, d ≥ 2 a maximum independent set

does not contain any twin pair. In fact, suppose that M is a maximum indepen-
dent set in Γk

d with l twin pairs. Then all these twin pairs are not dichotomous
with each other. Thus each such a pair lies in another simple class. Without
loss of generality, we can assume that one vertex in every twin pair has the
code + · · ·+. It is easy to see that a maximum independent set containing these
twin pairs can be obtained by adding to them all vertices with the code + · · ·+
which are not dichotomous with them. Let mi be a non-negative integer denot-
ing the number of twin pairs that are dichotomous in position i, i ∈ {1, . . . , d},∑d

i=1mi = l. Then the set M has

d∏
i=1

(k −mi) + 2l < kd

elements, what is a contradiction.
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As a maximium independent set does not contain any twin pair, every element
of it has to lie in other simple class. As we have kd different simple classes and
vertices with the same code form independent set which has a property that each
of its elements lies in other simple class, a maximum independent set in Γk

d has
kd elements. ◀

Theorem 4. The chromatic number of all generalized Keller graphs is 2d.

Proof. All vertices of the graph Γk
d can be put into the array with 2d rows

and kd columns such that each row of the array contains vertices with the same
code and each column contains all vertices from the same simple class. Then all
kd vertices in every row of the array are independent. Thus χ(Γk

d) ≤ 2d.

On the other hand,
nv

α(Γk
d)

=
(2k)d

kd
= 2d

implies χ(Γk
d) ≥ 2d. As a result, χ(Γk

d) = 2d. ◀

PROPERTIES Γk
d

number of vertices nv (2k)d

number of edges ve
1
2(2k)d((2k)d − (2k − 1)d − d)

degree ∆ (2k)d − (2k − 1)d − d

the independence number α
5 for k = 2 and d = 2
kd for the rest k and d

the chromatic number χ 2d

Hamiltonian Yes

class 1 Yes

Table 1

Properties of generalized Keller graphs Γk
d

4. Open question

It is easy to check that the size of maximum clique is:

� 2 for Γ3
2, Γ4

2, Γ5
2; there are two kinds of such cliques and both of them are

ismorophic with such cliques in Γ2
2:

00, 33 or 00, 13;
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� 5 for Γ3
3; all these cliques are isomorphic with such a clique in Γ2

3:

000, 032, 320, 203, 222;

� 12 for Γ3
4; all these cliques are isomorphic with such a clique in Γ2

4:

0000, 3023, 1203, 2331, 0021, 2003, 0231, 2011, 3233, 1211, 3210, 1323.

These results enforce us to state the following conjecture:

Conjecture 1. The size of a maximum clique of generalized Keller graphs Γk
d is:

� 2 for d = 2, k ≥ 6,

� 5 for d = 3, k ≥ 4,

� 12 for d = 4, k ≥ 4,

� 28 for d = 5, k ≥ 3,

� 60 for d = 6, k ≥ 3,

� 124 for d = 7, k ≥ 3.

Additionally, all these maximum cliques are isomorphic with maximum cliques of
Γ2
d, d = 2, 3, 4, 5, 6, 7, respectively.

d the size of a maximum clique of Γk
d

d = 2
2 for k = 2, 3, 4
< 22 = 4 for k ≥ 5

d = 3
5 for k = 2, 3, 4
< 23 = 8 for k ≥ 5

d = 4
12 for k = 2, 3
< 24 = 16 for k ≥ 4

d = 5
28 for k = 2
< 25 = 32 for k ≥ 3

d = 6
60 for k = 2
< 26 = 64 for k ≥ 3

d = 7
124 for k = 2
< 27 = 128 for k ≥ 3

d ≥ 8 2d for k ≥ 2

Table 2

The size of a maximum clique of generalized Keller graphs Γk
d
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