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Rothe Time-Discretization Method for Nonlinear
Parabolic Problems inWeighted Sobolev Space with
Variable Exponents

N. Elharrar*, J. Igbida

Abstract. In the present paper, we prove existence and uniqueness of weak solutions
for nonlinear parabolic problem whose model is


∂v
∂t − div

[
ω|∇v −Θ(v)|p(x)−2(∇v −Θ(v))

]
+ β(v) = f in QT := (0, T )× Ω,

v = 0 on ΣT := (0, T )× ∂Ω,
v(·, 0) = v0 in Ω.

The main tool used here is the Rothe time-discretization method combined with the
theory of weighted Sobolev spaces with variable exponents.

Key Words and Phrases: nonlinear parabolic problem, existence, weak solution, vari-
able exponent, semi-discretization, uniqueness, Rothe method, weighted Sobolev space.
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1. Introduction

Our goal in this work is to prove the existence and uniqueness results for weak
solutions of the following nonlinear parabolic problem:

(Pω)


∂v
∂t − div(Φ(∇v −Θ(v))) + β(v) = f in QT := (0, T )× Ω,
v = 0 on ΣT := (0, T )× ∂Ω,
v(·, 0) = v0 in Ω.
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Ω ⊂ Rd(d ≥ 3) is an open bounded domain with Lipschitz boundary ∂Ω;T is
a fixed positive number; ∇v is the gradient of v and Φ(ξ) := ω|ξ|p(x)−2ξ, for all
ξ ∈ Rd with 1 < p(x) < d.

The study of partial differential equations and variational problems with vari-
able exponent has received considerable attention for the first time in 1931, in
a work by Orlicz [23], but the field of variable exponent function spaces has
witnessed an explosive growth in last years. The evolutions in science lead to a
period of intense study of variable exponent spaces. Also observed were problems
related to modelling of so-called electrorheological fluids, the study of thermorhe-
ological fluids and image processing. For more general application of this kind of
problem we refer the reader to [18, 20, 21, 26].

Our problem (Pω) arises in various physical fields as chemical heterogeneous
catalysts, non-Newtonian fluids and as well as the theory of heat conduction in
electrically conducting materials (see, for example, [8, 24, 26]. Here we shall refer
to one of them which are related to turbulent flows.

Model: Flow through a porous medium in a turbulent regime
This model is governed by the continuity equation

∂θ

∂t
− div

(
|∇φ(θ)−K(θ)e|p−2(∇φ(θ)−K(θ)e)

)
= 0,

where

� θ is the volumetric content of moisture.

� φ(θ) is the hydrostatic potential.

� K(θ) is the hydraulic conductivity.

� e is the unit vector in the vertical direction.

The problem (Pω) or special cases of it has been extensively studied by many
authors in elliptic or parabolic case, we refer the reader to [1, 3, 4, 5, 9, 11, 14, 15].

We mention that the Euler forward scheme has been used by several authors
while studying time discretization of nonlinear parabolic problems, For the more
complete references, we refer the reader to [6, 10, 12, 13, 16, 20, 22, 25].

The advantage of our method is that we cannot only obtain the existence
and uniqueness of weak solutions to the problem (Pω), but also compute the
numerical approximations. In the particular case, where Θ = 0, the author in
[16] proved the existence and uniqueness of entropy solutions in Orlicz spaces by
using our Rothe time-discretization method.

This paper is divided into five parts. In Part 1, we introduce the problem (Pω)
and we state the assumptions. In Part 2, we mention some preliminary results
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and notations, also we state our main result. In Part 3, we discretize the problem
(Pω) by the Euler forward scheme, we prove the existence and uniqueness of weak
solution for the discretized problems and we show some stability results. At the
last section, we finish this work by treating the convergence and existence for the
problem (Pω), moreover, we confirm the uniqueness of solution.

2. Preliminary results and notations

As the problem (Pω) depends on the weight ω and the variable p(x), we
should use the weighted Lebesgue and Sobolev spaces with variable exponents.
We recall some notations and definitions which will be used in this paper.

We consider the following set

C+(Ω̄) =
{
p : Ω̄ → R+ : p is continuous and such that 1 < p− < p+ < ∞

}
,

where
p− = min

x∈Ω̄
p(x) and p+ = max

x∈Ω̄
p(x).

Let ω be a measurable positive and a.e. finite function defined in Rd and satisfying
the following integrability conditions:

ω ∈ L1
loc(Ω) and ω

−1
p(x)−1 ∈ L1

loc (Ω), (1)

ω−s(x) ∈ L1
loc(Ω), where s(x) ∈

(
d

p(x)
,∞

)
∩
[

1

p(x)− 1
,∞

)
. (2)

For p(·) ∈ C+(Ω̄), we define the weighted Lebesgue space with variable expo-
nent Lp(·)(Ω, ω) by

Lp(·)(Ω, ω) =

{
v : Ω → R : v is measurable and

∫
Ω
|v|p(x)ω(x)dx < ∞

}
.

We denote by Lp′(·) (Ω, ω∗) the conjugate space of Lp(·)(Ω, ω), where

1

p(x)
+

1

p′(x)
= 1,

and where
ω∗(x) = ω(x)1−p′(x) for all x ∈ Ω.

On the space Lp(·)(Ω, ω), we consider the function ρp(·),ω : Lp(·)(Ω, ω) → R
defined by

ρp(·),ω(v) = ρLp(·)(Ω,ω)(v) =

∫
Ω
|v(x)|p(x)ω(x)dx.

The connection between ρp(·),ω and ∥ · ∥p(·),ω is established by the following

result. Let v be an element of Lp(·)(Ω, ω). Then the following assertions hold:
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1. ∥v∥p(·),ω < 1 (respectively >,= 1
)
⇔ ρp(·),ω(v) < 1 (respectively >,= 1

)
.

2. If ∥v∥p(·),ω < 1, then ∥v∥p+p(·),ω ≤ ρp(·),ω(v) ≤ ∥v∥p−p(·),ω.

3. If ∥v∥p(·),ω > 1, then ∥v∥p−p(·),ω ≤ ρp(·),ω(v) ≤ ∥v∥p+p(·),ω.

4. ∥v∥p(·),ω → 0 ⇔ ρp(·),ω(v) → 0 and ∥v∥p(·),ω → ∞ ⇔ ρp(·),ω(v) → ∞.

Proof. See Proposition 2.1 in [2].

The weighted Sobolev space with variable exponent is defined by

W 1,p(·)(Ω, ω) =
{
v ∈ Lp(·) and |∇v| ∈ Lp(·)(Ω, ω)

}
,

endowed with the norm

∥v∥1,p(·),ω = ∥v∥p(·) + ∥∇v∥p(·),ω, ∀v ∈ W 1,p(·)(Ω, ω).

Hereinafter, by W
1,p(·)
0 (Ω, ω) we denote the closure of C∞

0 (Ω) in W 1,p(·)(Ω, ω).

Let p(·), s(·) be two elements of space C+(Ω̄), where the function s(·) satisfies
the condition (2). We define the following functions:

p∗(x) = dp(x)
d−p(x) for p(x) < d,

ps(x) =
p(x)s(x)
1+s(x) < p(x),

p∗s(x) =

{
p(x)s(x)

(1+s(x))d−p(x)s(x) if d > ps(x),

+∞ if d ≤ ps(x).

for almost all x ∈ Ω.

Proposition 1. Let Ω ∈ Rd be an open set of R, p(·) ∈ C+(Ω) and let (1) be
satisfied. Then we have

Lp(·)(Ω, ω) ↪→ L1
loc(Ω).

Proof. See Proposition 2.8 in [19]. ◀

Proposition 2. Let condition (1) be satisfied. Then the space
(
W 1,p(·)(Ω, ω), ∥v∥1,p(·),ω

)
is a separable and reflexive Banach space.

Proof. See Theorem 2.10 in [19]. ◀
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Proposition 3. Suppose that conditions (1) and (2) hold and p(·), s(·) ∈ C+(Ω̄).
Then we have the continuous embedding

W 1,p(x)(Ω, ω) ↪→ W 1,ps(x)(Ω, ω).

Moreover, we have the compact embedding

W 1,p(x)(Ω, ω) ↪→↪→ Lr(x)(Ω),

provided that r ∈ C+(Ω̄) and 1 ≤ r(x) < p∗s(x) for all x ∈ Ω.

Proof. In [19]. ◀

Proposition 4. (Holder inequality in [17]) Let p(·), p′(·) ∈ C+(Ω̄) with 1
p(·) +

1
p′(·) = 1. Then for any v1 ∈ Lp(·)(Ω) and v2 ∈ Lp′(·)(Ω) we have∣∣∣∣∫

Ω
v1 · v2dx

∣∣∣∣ ≤ (
1

p−
+

1

p′−

)
∥v1∥p(·)∥v2∥p′(·).

We assume that the exponent p(x) is log-Holder continuous, i.e., there is a
constant C such that

|p(x)− p(y)| ≤ C

− log |x− y|
, (3)

for every x, y with |x− y| ≤ 1
2 .

Proposition 5. (Poincarè type inequality in [20]) Let p(·) ∈ C+(Ω̄) satisfy
the log-Holder continuity condition (3). If (1) and (2) hold, then the estimate

∥v∥Lp(x)(Ω) ≤ C∥∇v∥Lp(x)(Ω,ω),

holds, for every u ∈ C∞
0 (Ω) with a positive constant C independent of v.

Lemma 1. For ξ, η ∈ Rd and 1 < p < ∞, we have

1

p
|ξ|p − 1

p
|η|p ≤ |ξ|p−2ξ(ξ − η). (4)

Proof. Consider the function g : R+ → R defined by x 7→ xp − px + (p − 1).
We have

g(x) ≥ min
y∈R+

g(y) = g(1) = 0 for all x ∈ R+.

Therefore, we take x = |η|
|ξ| ( if |ξ| = 0, the result is obvious) in the inequality

above to get the result of the lemma by using Cauchy-Schwarz inequality. ◀
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Lemma 2. ([8]) Let p, p′ be two real numbers such that p > 1, p′ > 1 and 1
p+

1
p′ =

1. Then we have

||ξ|p−2 ξ − |η|p−2η
∣∣p′ ≤

≤ C
{
(ξ − η)

(
|ξ|p−2ξ − |η|p−2η

)}α
2 {|ξ|p + |η|p}1−

α
2 , ∀ξ, η ∈ Rd,

where α = 2 if 1 < p ≤ 2 and α = p′ if p ≥ 2.

Remark 1. Hereinafter, ci, (i ∈ N) are positive constants independent of N .

Definition 1. A measurable function v : QT → R is a weak solution to non-
linear parabolic problem (Pω) in QT if v(., 0) = v0 in Ω, v ∈ C

(
0, T ;L2(Ω)

)
∩

Lp(x)
(
0, T ;W 1,p(x)(Ω, ω)

)
, ∂v

∂t ∈ L2 (QT ) and we have

∫ T

0

∫
Ω

∂v

∂t
φdxdt+

∫ T

0

∫
Ω
Φ(∇v −Θ(v)).∇φdxdt+

∫ T

0

∫
Ω
β(v)φdxdt

=

∫ T

0

∫
Ω
fφdxdt, ∀φ ∈ C1 (QT ) . (5)

Given a constant k > 0, we define the cut function Tk : R → R as

Tk(s) :=

{
s if |s| ≤ k,
k sign(s) if |s| > k,

where

sign(s) :=


1 if s > 0,
0 if s = 0,
−1 if s < 0.

Here, we state the main result of our paper.

Theorem 1. Under the hypotheses (H1), (H2) and (H3), there exists a unique
weak solution for the nonlinear parabolic problem (Pω).

3. The semi-discrete problem and stability results

3.1. The semi-discrete problem

In this part, we discretize the problem (Pω) by Euler forward scheme and we
study the questions of existence and uniqueness for the discretized problems. We
make the following hypotheses.
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(H1) β is a non decreasing continuous real function on R, surjective such that
β(0) = 0 and |β(x)| ≤ M |x|, where M is a positive constant.

(H2) f ∈ L∞ (QT ) and v0 ∈ L∞(Ω) ∩W 1,p(x)(Ω, ω).

(H3) Θ is a continuous function from R to Rd and Θ(0) = 0 such that |Θ(x)−
Θ(y)| ≤ λ|x− y|, for all x, y ∈ R, and λ is a positive constant.

The Euler forward scheme applied to the problem (Pω) yields the following prob-
lem:

(Pω)


Vn − τ div (Φ (∇Vn −Θ(Vn))) + τβ (Vn) = τfn + Vn−1 in Ω,
Vn = 0 on ∂Ω,
V0 = v0 in Ω,

where Nτ = T, 0 < τ < 1, 1 ≤ n ≤ N , tn = nτ and

fn(·) =
1

τ

∫ tn

tn−1

f(s, ·)ds, in Ω.

A weak solution to the discretized problem (Pω
n ) is a sequence (Vn)0≤n≤N such

that V0 = u0 and Vn is defined by induction as a weak solution to the problem{
v − τ div (Φ (∇v −Θ(v))) + τβ (v) = τfn + Vn−1 in Ω,
v = 0 on ∂Ω,

(6)

i.e. for Vn ∈ L∞(Ω) ∩W 1,p(x)(Ω, ω) and ∀φ ∈ W 1,p(x)(Ω, ω), ∀τ > 0, we have∫
Ω
Vnφdx+τ

∫
Ω
Φ(∇Vn−Θ(Vn)).∇φdx+τ

∫
Ω
β (Vn)φdx =

∫
Ω
(τfn + Vn−1)φdx.

(7)

Theorem 2. Under the hypotheses (H1), (H2), (H3), the problem (Pω
n ) has

a unique weak solution (Vn)0≤n≤N and for all n = 1, . . . , N, Vn ∈ L∞(Ω) ∩
W 1,p(x)(Ω, ω).

For n = 1, we denote V = V1 and we rewrite the problem (6) as{
−τ div(Φ(∇V −Θ(V ))) + β̄(V ) = F in Ω,
V = 0 on ∂Ω.

(8)

Thanks to the hypothesis (H2), the function F = τf1+v0 is an element of L∞(Ω)
and the function β̄(s) = τβ(s)+s is a non decreasing continuous real function on
R surjective such that β̄(0) = 0. Therefore, by [7], the problem (8) has a unique
weak solution V1 in L∞(Ω) ∩W 1,p(x)(Ω, ω).

By induction, we deduce by the same way that the problem (Pω) has a unique
weak solution (Vn)0≤n≤N such that n = 1, . . . , N, Vn ∈ L∞(Ω) ∩W 1,p(x)(Ω, ω).



Rothe Time-Discretization Method for Nonlinear Parabolic Problems 127

3.2. Stability results

In this part, we prove some a priori estimates for the discrete weak solution
(Vn)1≤n≤N which we use later to derive convergence results for the Euler forward
scheme.

Theorem 3. Under the hypotheses (H1), (H2), (H3) there exists a positive
constant C (V0, f, F ) depending on the data but not on N such that for all n = 1,
. . ., N , we have

∥Vn∥∞ ≤ C (v0, f, F ) , (9)

n∑
i=1

∥Vi − Vi−1∥22 ≤ C (v0, f, F ) , (10)

τ
n∑

i=1

∫
Ω
Φ(∇Vi −Θ(Vi)).∇Vidx ≤ C (v0, f, F ) . (11)

Proof. For (9). For k > 0 and 1 ≤ n ≤ N , we have Vn ∈ L∞(Ω). So,
multiplying (Pω

n ) by |Vn|k Vn and integrating over Ω, we have

∫
Ω
|Vn|k+2 dx− τ

∫
Ω
div (Φ (∇Vn −Θ(Vn))) |Vn|k Vndx+ τ

∫
Ω
β (Vn) |Vn|k Vndx

=

∫
Ω
(τfn + Vn−1) |Vn|k Vndx. (12)

According to Holder’s inequality, (H1), (H2), and (H3), using also the fact that
Φ(∇Vi −Θ(Vi)).∇Vi is monotone, we get

∥Vn∥k+2
k+2 ≤ τc1 ∥Vn∥k+1

k+1 + ∥Vn−1∥k+2 ∥Vn∥k+1
k+2 . (13)

We obtain
∥Vn∥k+2 ≤ τc1 ∥Vn∥k+1

k+1 + ∥Vn−1∥k+2 . (14)

By using simple induction, we get

∥Vn∥k+2 ≤ Nc2T + ∥V0∥k+2 . (15)

Finally, as k → ∞, we obtain the result (9).
For (10). Let 1 ≤ i ≤ N and let φ = Vi as a test function in (7). Then we

have∫
Ω
(Vi − Vi−1)Vidx+τ

∫
Ω
Φ(∇Vi−Θ(Vi)).∇Vidx+τ

∫
Ω
β (Vi)Vidx =

∫
Ω
τfiVidx.

(16)
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By the elementary identity

a(a− b) =
1

2
a2 − 1

2
b2 +

1

2
(a− b)2,

we get from (16)

1

2
∥Vi∥22 −

1

2
∥Vi−1∥22 +

1

2
∥Vi − Vi−1∥22 + τ

∫
Ω
Φ(∇Vi −Θ(Vi)).∇Vidx ≤ τc3 ∥Vi∥2 .

(17)
Taking the sum of (17) from i = 1 to n, we get

1

2
∥Vn∥22 −

1

2
∥V0∥22 +

1

2

n∑
i=1

∥Vi − Vi−1∥22 + τ
n∑

i=1

∫
Ω
Φ(∇Vi −Θ(Ui)).∇Vidx ≤ c4.

(18)
So

1

2

n∑
i=1

∥Vi − Vi−1∥22 + τ
n∑

i=1

∫
Ω
Φ(∇Vi −Θ(Vi)).∇Vidx ≤ c4 +

1

2
∥V0∥22 . (19)

Thus
1

2

n∑
i=1

∥Vi − Vi−1∥22 + τ

n∑
i=1

∫
Ω
Φ(∇Vi −Θ(Vi)).∇Vidx ≤ c5. (20)

Hence
1

2

n∑
i=1

∥Vi − Vi−1∥22 ≤ c5. (21)

This yields the stability result (10).
For (11). By (20) and (10), we have the stability result (11). ◀

Theorem 4. Let the hypotheses (H1), (H2), (H3) hold. Then, there exists a
positive constant C (u0, f, F ) depending on the data but not on N such that for
all n = 1, . . . , N, we have

τ

n∑
i=1

∥β (Vi)∥1 ≤ C (v0, f, F ) , (22)

lim
k→0

n∑
i=1

τ

k

∫
{|Vi|≤k}

Φ(∇Vi −Θ(Vi)).∇Vi ≤ C (v0, f, F ) , (23)

n∑
i=1

∥Vi − Vi−1∥1 ≤ C (v0, f, F ) . (24)
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Proof. For (22) and (23).
Let φ = Tk (Vi) as a test function in (7). Then, dividing this equality by k and
taking limits when k goes to 0, we have

∥Vi∥1+τ ∥β (Vi)∥1+lim
k→0

τ

k

∫
{|Vi|≤k}

Φ(∇Vi−Θ(Vi)).∇Vi ≤ τ ∥fi∥1+∥Vi−1∥1 . (25)

Summing (25) from i = 1 to n, we deduce the stability results (22) and (23).
For (24).
Let φ = Tτ (Vi − Vi−1) in (7). Then, dividing this equality by τ we get∫

Ω
(Vi − Vi−1)

Tτ (Vi − Vi−1)

τ
dx+

∫
Bi

τ

Φ(∇Vi −Θ(Vi)).(∇Vi −∇Vi−1)dx

≤ τ ∥β (Vi)∥1 + τ ∥fi∥1 , (26)

where Bi
τ = {|Vi − Vi−1| ≤ τ} .

By applying Lemma 2.5, we get

1

p(x)
|∇Vi − θ(Vi)|p(x) −

1

p(x)
|∇Vi−1 − θ(Vi)|p(x) ≤

≤ ω(x)|∇Vi − θ(Vi)|p(x)−2(∇Vi − θ(Vi)).(∇Vi −∇Vi−1).

So ∫
Ω
(Vi − Vi−1)

Tτ (Vi − Vi−1)

τ
dx+

+

∫
Bi

τ

(
1

p(x)
|∇Vi − θ(Vi)|p(x) −

1

p(x)
|∇Vi−1 − θ(Vi)|p(x))dx

≤ τ ∥β (Vi)∥1 + τ ∥fi∥1 .

Summing the inequality above from i = 1 to n, using the stability result (22), we
have

n∑
i=1

∫
Ω
(Vi − Vi−1)

Tτ (Vi − Vi−1)

τ
dx ≤

≤ 1

p(x)

∫
Ω
|∇V0|p(x)dx+ c6 ≤

1

p−

∫
Ω
|∇V0|p(x)dx+ c6. (27)

So, we let τ tend to 0 in the inequality above, and we get the stability result (24).
◀
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4. Convergence and existence results

In this part, using the above results, we build a weak solution of problem
(Pω) and we show that this solution is unique.

4.1. Proof of existence

Let us introduce a piecewise linear extension, called Rothe function by{
vN (0) := v0

vN (t) := Vn−1 + (Vn − Vn−1)
(t−tn−1)

τ , ∀t ∈
]
tn−1, tn

]
, n = 1, . . . , N inΩ,

(28)
and a piecewise constant function{

v̄N (0) := v0
v̄N (t) := Vn ∀t ∈] tn−1, tn] , n = 1, . . . , N in Ω,

(29)

where tn := nτ. As already shown, for any N ∈ N, the solution (Vn)1≤n≤N

of problems (Pω
n ) is unique. Thus, vN and v̄N are uniquely defined and by

construction, for any t ∈ ]tn−1, tn ] , n = 1, . . ., N , we have

i) ∂vN (t)
∂t = (Vn−Vn−1)

τ .

ii) v̄N (t)− vN (t) = (Vn − Vn−1)
tn−t
τ .

By Theorem 3, for any N ∈ N, the solution (Vn)1≤n≤N of problem (6) is unique.
Thus, vN and v̄N are uniquely defined.

By using the stability results of Theorem 4, we deduce the following a priori
estimates concerning the Rothe function vN and the function ūN .

Lemma 3. Under the hypotheses (H1), (H2) and (H3), there exists a positive
constant C (T, v0, f, F ) not depending on N such that for all N ∈ N, we have

∥v̄N − vN∥2L2(QT ) ≤
1

N
C (T, v0, f, F ) , (30)

∥v̄N∥L∞(0,T,L2(Ω)) ≤ C (T, v0, f, F ) , (31)

∥vN∥L∞(0,T,L2(Ω)) ≤ C (T, v0, f, F ) , (32)

∥v̄N∥Lp(x)(0,T,W 1,p(x)(Ω,ω)) ≤ C (T, v0, f, F ) , (33)

∥β (v̄N )∥L1(QT ) ≤ C (T, v0, f, F ) , (34)∥∥∥∥∂vN∂t
∥∥∥∥2
L2(QT )

≤ C (T, v0, f, F ) . (35)
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Proof.

For (30). We have

∥v̄N − vN∥2L2(QT ) =

∫ T

0

∫
Ω
|v̄N − vN |2 dxdt

≤
i=N∑
i=1

∫ tn

tn−1

∫
Ω
|Vn − Vn−1|2

(
tn − t

τ

)2

dxdt

≤ 1

N
C (T, v0, f, F ) .

Using the same method as above, we prove the estimates (31), (32), (33) and
(34).

For (35).

We have for n = 1, . . . , N and t ∈ (tn−1, tn]

∂vN (t)

∂t
=

(Vn − Vn−1)

τ
.

This yields ∥∥∥∥∂vN∂t
∥∥∥∥
L1(QT )

=

∫ T

0

∫
Ω

∣∣∣∣∂vN∂t
∣∣∣∣dx dt

=

N∑
n=1

∫ tn

tn−1

1

τ
∥Vn − Vn−1∥1

=
N∑

n=1

∥Vn − Vn−1∥1 .

By the result (24), we deduce the estimate (35). Finally, the proof of Lemma 3
is complete.

Now, using the two results (31) and (32) of Lemma 3, we find that the
sequences (vN )N∈N and (v̄N )N∈N are uniformly bounded in L∞ (

0, T, L2(Ω)
)
.

Therefore, there exist two elements v and u in L∞ (
0, T, L2(Ω)

)
such that

v̄N →∗ v in L∞ (
0, T, L2(Ω)

)
,

vN →∗ u in L∞ (
0, T, L2(Ω)

)
.
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And by the result (30) of Lemma 3 it follows that

v ≡ u.

Furthermore, by Lemma 3 and the hypothesis (H2), we obtain

∂vN
∂t

→ ∂v

∂t
in L2 (QT ) , (36)

v̄N → v in Lp(x)
(
0, T,W 1,p(x)(Ω, ω)

)
. (37)

By the hypothesis (H1), we know that

β (v̄N ) → β(v) a.e. in QT ,

and

|β(v̄N )| ≤ M |v̄N | ∈ L1 (QT ) .

Then, thanks to the Lebesgue dominated convergence theorem, we deduce that

β (v̄N ) → β(v) in L1 (QT ) . (38)

Since {∇v̄N −Θ(v̄N )} is equiintegrable by the assumption (H3) and due to
the boundedness of (v̄N ), we have

Φ(∇v̄N −Θ(v̄N )) → Φ(∇v −Θ(v)) weakly in L1 (QT ) .

From the reflexivity of Lp′(x)(Ω, ω) and the boundedness of {Φ (∇v̄N −Θ(v̄N ))} ,
we have

Φ(∇v̄N −Θ(v̄N )) → Φ(∇v −Θ(v)) weakly in
(
Lp′(x) (QT , ω)

)d
. (39)

Thanks to Lemma 3 and Aubin-Simon’s compactness result, we obtain

vN → v in C
(
0, T, L2(Ω)

)
. (40)
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Now, let us show that the limit function u is a weak solution of problem
(Pω). Firstly, we have vN (0) = V0 = v0 for all N ∈ N. Then v(0, .) = v0. Now
let φ ∈ C1 (QT ) and rewrite (5) in the form

∫ T

0

∫
Ω

∂vN
∂t

φdxdt+

∫ T

0

∫
Ω
Φ(∇v̄N −Θ(v̄N )).∇φdxdt+

∫ T

0

∫
Ω
β (̄N )φdxdt

=

∫ T

0

∫
Ω
fNφdxdt, (41)

where
fN (t, x) = fn(x), ∀t ∈] tn−1, tn] , n = 1, . . . , N.

Taking limits as N → ∞ in (41) and by the above results, we find that v is a
weak solution of nonlinear parabolic problem (Pω). ◀

4.2. Proof of uniqueness

Let v1 and v2 be two weak solutions of nonlinear parabolic problem (Pω).
Take φ = v1 − v2 as a test function for solution v1 in (5) and take φ = v2 − v1 as
a test function for solution v2 in (5). Then we obtain∫ T

0

∫
Ω

∂v1

∂t
(v1 − v2)dxdt+

∫ T

0

∫
Ω
Φ(∇v1 −Θ(v1)).∇(v1 − v2)dxdt

+

∫ T

0

∫
Ω
β(v1)(v1 − v2)dxdt =

∫ T

0

∫
Ω
f(v1 − v2)dxdt,

and ∫ T

0

∫
Ω

∂v2

∂t
(v2 − v1)dxdt+

∫ T

0

∫
Ω
Φ(∇v2 −Θ(v2)).∇(v2 − v1)dxdt

+

∫ T

0

∫
Ω
β(v2)(v2 − v1)dxdt =

∫ T

0

∫
Ω
f(v2 − v1)dxdt.

By summing up the two above equalities, we get∫ T

0

∫
Ω

∂(v1 − v2)

∂t
(v1 − v2)dxdt+

+

∫ T

0

∫
Ω
(Φ(∇v1 −Θ(v1))− Φ(∇v2 −Θ(v2))).∇(v1 − v2)dxdt
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+

∫ T

0

∫
Ω
(β(v1)− β(v2))(v1 − v2)dxdt = 0.

According to the hypotheses (H1), (H3), we get

v1 ≡ v2.

5. Conclusion

In this work, we prove the existence and uniqueness of weak solutions for
nonlinear parabolic problem (Pω) using time discretization technique by Euler
forward scheme and Rothe method combined with the theory of variable exponent
weighted Sobolev spaces.
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