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On Equations of the Form Au — (% = f(z,t,u, Du)
R.A. Amanov*, A.l. Ismailov

Abstract. The paper describes an interpolation method for obtaining a priori estimates
for strong solutions of semilinear parabolic equations with unbounded singularities on the
right-hand side, provided that there is a first a priori estimate in the space of summable
functions.
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1. Introduction

The initial-boundary value problem for a semilinear second-order parabolic
equation is studied. We consider the problem of the existence of a priori estimates
for a solution in the Sobolev space in terms of its norm in the Lebesgue space.
The growth conditions for the nonlinearities are found for which this problem has
a solution.

Let Ry = {to € R:tp > 0}. Let us introduce the following notations: x =
(z1,...,zy) is a point in the space R™;Q2 C R" is a bounded domain with the
boundary 92 from the class C?; Q. = Q x (to,to + 7) is a cylindrical domain in
R to,7 € Ry;0Q, = 0Q x (to, 1o + 7) is a lateral surface area of the cylinder
Qr; Qr =Qx(0,7T) is a cylinder of height T and (Qr) = {(x,t) |z et = 0}
J (02 x [0,T1) is a parabolic boundary of Q7.

All functions introduced below are assumed to be real-valued functions. The
following functional spaces have been used [8]: the space of summable functions
L, (Qr), p> 1, with the norm

1/p
p — 1i .
Hp QT T </ / ‘U T, t ‘ d$dt) ’ ||UHOO,QT - phj>lgo HUHP;QT ’
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anisotropic space of summable functions Ly, (Q7), ¢,r > 1, with the norm

T r/q 1/7‘
lillyir = Nollsyoion = | (/Q \u(a:,t)\qu) a)

anisotropic Sobolev space Wg 1 (Qr) with the norm

d%u
W

NE
ot

n
lullyz1 g,y = Il pgr + ,
i=1 1 g, Qr QT

2. Basic a priori estimate

Consider the following boundary value problem:

Au— 3 = Fe.tu Du), (o.0) € Qr,
ulpo, = ¢ (x,t), 2 € 9Q, t € (0,T), (1)
u(z,0) =9 (z), =€

Here A is the Laplace operator, u = u(z,t) and Du = D,u (x,t) is the gradient
of the function u (z,1t).
We consider this problem in the class of real functions from the Sobolev space

VVp2’l (Qr) for p > n + 2, so that the boundary function ¢ (z,t) belongs to the
2-11 22
space W, * (0Qr) and ¢ (x) € W), 7 () (see [2, p. 389)]).

Regarding the function f (x,t,&p,&1), it is assumed that the following condi-
tions are satisfied:

A.1) Let the function f (z,t,&o,&1) be defined on Q7 x R x R™ with values in
R and satisfy the Carathéodory condition, i.e. let it be measurable with respect
to (z,t) for all (§0,&1) € R x R™ and continuous with respect to (£ &;) for almost
all (z,t) € Qr.

A.2) Let

|f ($7t7§07§1) ’ <b (.CC, tv&)) + b ('r7t7§0) ’ ’flwl

for almost all (x,t) € Qr and for all § € R, & € R", with non-negative
carathéodorian functions b (z,t,&) and by (x,t,&p) such that for any 6 > 0 the
function

86 (.%‘,t) = Sup{b(.%’,t,fo) | ’€0| < 5}
belongs to Ly, (Q1),p > 1 and p > n + 2; the function

b1 s (x,t) = sup { b1 (z,t,&) | & < 6}
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belongs to Ly, (Q7) with ¢ > p, r > p.
A3) Let
p=m=2-2_2 (2)
q

For elliptic operators, this problem was considered in [1, 2, 3, 4, 5]. In [1, 2, 3,
4], it is assumed that a nonlinear function f (x,u (z), Du (z)) is continuous in all
its arguments. In this case, the well-known S.N. Bernstein growth condition on a
non-linear function is sufficient for the a priori estimate in ||u|| .., to follow from
the a priori estimate in || Dul| ., and, hence, the estimate in H““Wﬁ(ﬂ)- In [5, 6],
a boundary value problem for elliptic and parabolic equations, respectively, was
considered, where the non-linear function f belongs to the space L.

In this paper, we do not assume that the nonlinear function is continuous
with respect to all of its arguments. Instead, we require that this non-linear
function belongs to the space L, (Qr) for an arbitrarily fixed function u (x,t)
from Wg’l (Qr) with p > n+ 2.

A new exact growth condition for the considered nonlinear function f (x,t, &p, &1)
with respect to &y € R, & € R"™ is obtained, under which a priori estimate in
| Dul| .0, follows from the a priori estimate in ||ull of the solution of prob-
lem (1).

One particular example shows the unimprovability of the corresponding growth
index. The theory of solvability of problems of the form (1) is considered under
the existence condition for upper and lower solutions of these problems. Here,
along with the theorem on a priori estimate in ||u||W5,1(QT), the maximum prin-

00;Qr

ciple is used for Aleksandrov type parabolic equations (see [7, pp. 58-71]).

The maximum principle for the considered problem (1) in the Sobolev space
Wp2 1 (Qr) with p > n + 2. is discussed in examples. Based on the general solv-
ability theorem, particular theorems on the solvability of problems of the form
(1) are obtained.

To study the problem (1), we will make essential use of the embedding theorem
for the spaces sz 1 (Q7) and the multiplicative inequality that follows from it.
Let us formulate the embedding theorem [8] in the form we need.

Lemma 1. Let u(x,t) € Wg’l (Qr), ul(g,) =0, the conditions p > n+2,q > p,
r >p and A.3) be fulfilled. Then

[ Dl

1-6
\UHZ,

0
< Cr - Jlullyyza mi@r T 2 [ullymq, (3)

or) |
with positive constants Cy and Co, independent of the function w(x,t) from
W2 (Qr), where

2a,24,QT

0_1 _ Xo+x1
— T /"L_i?

K X0
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vo=3[n(}-2)+1+2(5-1)] >0
— 1 1_ 1 11
R
zx:u-p-q>l’ zt_M'P rzm, 1 <1, m < oo are constants and g > 1.
q—p r=p

(4)

Lemma 2. Let u(z,t) € Wg’l (Qr) and the conditions A.1)- A.3) be fulfilled.
Then the operator

FO (u) (.Q?,t) = f (ac,t,u(x,t) 7Du (l‘,t))
is a bounded and continuous operator from I/VpQ’1 (Qr) to L, (Qr).

Proof. Let us estimate ||Fp (u)]],.qp, with the help of conditions A.1) - A.3).
From inequality (3) for Du, we have

1-6 1-6
HDuHZmzt;QT <Ci- ||UHW:3,1(QT) : ||u”oo,oo;QT +Co- ||u||oo,oo;QT : (5)

From condition A.2) it follows that

’ HDUHN 2z, 2t;QT

By (Wl < [bs], -+ Ca s
H ()Hp,QT QT L q,m;QT

with 0 = ||u[|.¢,. and a positive constant C'3, independent of the function u (z,t)

from W' (Qr). Here ||ul|
ties (5), we obtain

= ||ull Then, based on (4) and inequali-

00;Qr 00,00;QT"

180 (@)l < [bs] o Hlullzay®r (oo, ) [oua], @2 (Iullg,) -

(6)
where 1, ®9 : Ry — R, are the increasing functions defined by the known data.
(6) proves the boundedness of the operator Fp (u).

On the other hand, p > n + 2. Then, by virtue of the Sobolev embedding
theorem [9], it follows that the embedding operator I : Wa'' (Q7) = L, ., (Q7)
is completely continuous. By virtue of (6), the operator Fy : L., ., (Qr) —
L, (Qr) is bounded and, by the general property of the superposition operator,
is continuous.

Thus the operator Fj : Wp2 1 (Qr) — L, (Qr) is completely continuous as
a composition of completely continuous and continuous operators. Lemma 2 is
proved. |
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We have

Au—gq::f(x,t,u,Du):W-

Hence, for the function u (x,t)
Au—c(x,t)u(x,t) — % = fo(z,t) + f1 (z,t) - |Dul' | (z,t) € Qr,
ulpg, = ¢ (z,t), z € 0Q, t€(0,T),

u(@,0) = (z), z€Q,
where

f(z,t,u, Du)

fi@ ) = S Daf

, Jo (:L‘at) = h (J:at)_c(l’vt)u(l‘at)v

¢(z,t) = bs (z,t) > 0 with § = [|ul

o0;Qr *

Consider in the space I/Vp2 1 (Q7) with p > n + 2 the boundary value problem

Aﬁ—c(m,t)ﬁ—%—f:fl(m,t)-|D19|“—|—T-f0(m,t), (x,t) € Qr,
VNogr =7 (1), 2 €00, te(0,T),

I (z,0) =79 (z), =€l

141

(8)

with the parameter 7 € [0,1] and the functions ¢ (x,t), fi (x,t) and fo (z,t) de-

fined above.

For problem (8), the following lemma on the uniqueness of the solution is

valid.

Lemma 3. For any fized 7, the problem (8) has at most one solution u (z,t)

from Wg’l (Qr) ,p>n+2.

Proof. Assume the contrary. Then for the difference w = ¢ — z of two possible

solutions 9 and z, we have
Aw — ¢ (z,t)w — %—‘: = fi(z,t)- > hi(z,t) - Diw, (z,t) € Qr,

w(z,0) =0, z€Q,
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where .
h; (z,t) = / H;(z,t,v)dv,
0

1

H;(xz,t,v)=p- [Z (v Dpw + Dkz)2] (v Diw+ D;z) (z,t)
1

(SIS

k=
for "7, (v Dyw + Dyz)” (2,t) # 0 and
Hi (l‘, i, V) =0

for S0, (v - Dyw + Dg2)* (x,t) = 0,5 = 1,...,n.

Since ¢ (x,t) > 0,c(x,t) € L, (Qr), fi (z,t)-h;i (z,t) € Lgr (Qr) (i=1,...,n)
and p > n+2, from the results of [7, pp. 58-71] it follows that w (z,¢) = 0 in Q7.
Lemma 3 is proved. |

Now let ¥; and 95 be solutions to problem (8) corresponding to the values
T and 7o (79 > 71) of the parameter 7, respectively. Then for the difference
¥ = Y9 — Y1, we have

A — ()0 — 2 = fi (2, 8) 0 hi (2,8) Did + (10 — 1) fo (2,1), (2,1) € Qr;

Voo = (2 — 1) @ (2,t), 2 €0, t € (0,T),

19(1:70) = (72_71)'¢($)a T € Q7
where .
hi (z,t) = / H; (z,t,v)dv, H; (z,t,v) =
0

-1

— [i (1/ D0 + ka)Q] . <y - Dl + Dﬂ) (2,1)

k=1

NS

~ 2
for S35_y (v Dy + Dyt ) (w,1) # 0 and
I:Iz' (x, t, V) =0

- 2
for Zzzl (V - Dyt + Dkz91> (x,t) = 0.
Assume
K= (T2 - 7—1) : (1 + ||u||oo) , T2 > T1.

Lemma 4. [0 — vl < (2= 71) - (1+ Jull g, )-
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Proof. For the function (15 — K), we have

A(@—K) —c(z,t) <§—K> —% (@—K) =
fi(z,t) 270 hi (x,t) - D; <1§—K> + (2 —71) fo (z,t) +c(x,t) K, (2,t) € Qr;

(@—K)’aQ =(n-—mn)p—K,ze€0Q, te(0,T),
T

<1§—K>’t:0=(TQ—T1)~w—K, zeq.
Further
c(z, ) K+ (12 — 1) fo(x,t) = (10 — 71) - [fo (x,t) + c(z,t) (1 + ”“Hoo;QTﬂ =
= (12 =) @) (Jullagy — (@) + (/1 (2:8) + e (@,1)] 2 0
in Q7 and

(19 — K) ‘8QT =(n-—n)p—(ro—71) (1 + ||u”oo;QT) =
=(n =) [p=1- Jullg,] <
<(me—1): |- ||u||oo;QT:| <0,

<1§ — K)’ 0T (o — 1) Y () — (12 — 71) (1 + ”uHoo;QT> —

(=) (9= 1= iy <
<(n-m) [6 - Julg,| <0

Then from [7, pp. 58-71] it follows that 9 < Kin Qp. Similarly, inequality
¥ > —K is proved in Q7. Lemma 4 is proved. <

Theorem 1. Let conditions A.1) and A.2) be satisfied. Then there exists a
function @ : Ri — R4 increasing in each argument such that for any possible
solution u € WpQ’l (Qr) of problem (1) the a priori estimate

lullwz1gry < @ (1l - 1€l 217 oy Wl @) (9)
holds.

The function ® depends only on the known data included in the conditions of
|

the theorem (includin, Hl; H , with § = ||u| ..o )-
(inciuding s il

q,m;QT
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Proof. Consider a parametric family of problems (8). It should be noted that,
by Lemma 3, the solution of problem (8) for 7 = 1 coincides with the solution of
problem (7) and (in view of the adopted notation) with the solution of problem

(1).
Let 91 and 95 be solutions to problem (8), corresponding to the values 71 and
Ty (12 > 711) of the parameter 7, respectively. Then, by Lemma 4, we have

W2 = D1l < (2= 1) (14l ) (10)
On the other hand, this function is a solution to the problem

AJ —c(a,t) D — % = f (x,8) (|DO2|" — | DKM + (2 — 1) fo (2,8), (2,1) € Qr;

| =m-m)e, s eon, te0,1),
OQr

ﬂhxqm—ﬁywmyxen
Consequently
HAﬁ—c z,t) 0 H
p; T
= |fu - [DYo|" = fr - [DO[" + (12 = 71) fo |0 <
Hfl ‘D19+D191‘ + f1- (DO " + (7'2—7'1)f0H <
) PQT (11)
< Hf1- {2“ (‘D’ﬂ‘ + [Doy " )+|D191| } (D—ﬁ)fo” <
i pQT
<2 fillgror - [P
+2 [ fillgror - HD191||OOQT (T2 —71) - [l foll o
On the other hand, it follows from (5) that
|pd|" <ot (C{‘-HﬁH R ] o [ o ) (12)
00;Qr Wy (QT) 00;Q 00;QT

By virtue of the well-known linear theory of parabolic problems, the inequality

0

< A. .9 - 22~
<A AY—c- 9 Y +

‘Mhﬂwﬂ

QT

=10 Dol gy + (72 = ) Il
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is fulfilled. Here A = A (Q, n,p,q, ”CHp;QT>'
Then, using inequalities (10)-(12), we obtain

3 —1
s g <42 il

y (C{‘ Ly — )L (1 + HuHoo;QTy_l ' Hﬁﬂwﬁl@ﬂ "

+0f 2 (=) (1l ) ) +

12 A fllgrar 1D gy + A (= 70) - [ ollgr +

QT | 00,QTr

+A- (g —71)- ( ng“wg—l/p,l(aQT) + HQprgﬂ/p(Q) ) =

_ ~1 e [
= A2 O il (=) (L gy ) |J o+
Wy (Qr)

FA-CE 252l o (=) (1 g, )

+20- A Al D915 o +

q,r;QT 00,QT
+A- (12 =11) - (Ifollpgr + 12l y2-1m1 gy + 1y 2-2mgy ) -

Hence it follows that

(CH . 9282,
waran < 24 (G827 Wil + ol +

1l 2-1m1 5y + 18 ly2-2m gy ) +

+A 24T f] [ D915 (13)

q,m;QT 00,QT ?
for

O<7‘2—7‘1§h, (14)
where

_ 1 -1
h=(ACt2 ) i i (T g, )

71 and 79 are any numbers from the interval [0, 1], satisfying the inequality (14),
and ¥y, Uy are the corresponding solutions of the problem (8) from Wa'' (Qr).
So the inequality (13) becomes

~ o )
HﬂHWEJ(QT) S A+ A2 fillgrior - 1DV 5. » (15)
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where the constant A? is defined from (13):
AO =24 (0522M_2 : ||f1Hq,7";QT + HfOHp;QT + ||SDHW§*1/PJ(8QT) + ||¢||W3*2/I’(Q)) .

Denote 71 = 7, 7)) = 7,0 9¢=1) = 9, 9*) = 9y, From the inequality
(15), we obtain

I

T e L

arQr ‘

Wy (Qr) 00;QT

for 0 < 7)) — (=1 < b 7= 7(k) ¢ [0,1]. Hence, by virtue of the inde-
pendence of h of the indicated values 7#=1) () and the embedding inequality
Wg’l (QT) — 1o (QT) with p > n + 2

HDﬂ(kfl)H < const - Hﬁ‘(k*l)H

i Qr w2t (@Qr)’

after a finite number of iterations, we obtain the assertion of Theorem 1. In this
case, the first iteration (k = 1) corresponds to t = 0 and ¥(®) = 0. Theorem 1
is proved. <

Remark 1. Theorem 1 remains valid for equations of the form (1) under other

boundary conditions, where the maximum principle is valid for the corresponding
linear boundary value problem.

3. Non-improvability of the index =2 — % —

3N

In this section, we give an example of a boundary value problem of the form
(1) for which all the conditions of Theorem 1 are satisfied, except condition A.3),
i.e., equalities (2). For this counterexample, the corresponding inequality holds
and it is shown that the assertion of Theorem 1 is not true.

Let n=1and Qr = (—1,1) x (0,1),

9*u  Ou B »

G- G =vwo |t woean (16
t—2 . _ t _ .
u(—l,t):m:gao(t), u(l,t)—i(Q_t_i_g)é_gpl(t),te(O,l),
u(x,O)_mzw@, e (-1,1), (17)

with b, (x,t) = 220
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Here 0 < e <1, 0<5<%, ,u>2—%—%:2—%—%, q>p, T>p, p>1
and p > 3.
This problem with the given parameters has a unique solution

t—1
u(x,t) = vt 5
(24+1—t+e)
Assume that
1
Z ngi”wg—l/%l(a(o’l)) + H’lﬁHW;—Q/P(il’l) S C1, (18)

1=0

where ¢ is a positive constant independent of ¢, € € (0,1].
Let

u(‘x?t):Ek'ﬂ(va)ay:faTzi k= y (19)
where ¥ € ¢! (Rz) and

sup |9 (y, 7)| < oo, sup|DJ (y,7)| < oc. (20)
R2 R2

This choice of function w (z,t) provides the boundedness of the norm

[ullo,0r < supful <c,
Qr

where the constant ¢ is independent of €, £ € (0, 1]. On the other hand, we have

1/p

p
Oul” i >

ot

llly2 oy = Z/ ]Dau|pdxdt+/
Qr QT

la|<2

1/p
p

dydrt ,

o438 oY
> & 245 . Z/ |D°‘19|pdyd7+/
T Q7

ot
|a|=2

where Q5 = {(y,7)ley € (—1,1), *r € (0,1)}. Hence, for a domain Q7 such
that Qr € Q% for € € (0,1], we have

1/p
p

dydr

S

143 v
lallor ) <o 5 / \Damdde/ ‘
Wp (QT) Z Q% Q% 8t

laf=2
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Then for the function ¥ (y, 7) with

Z/ |D%9\dedr+/ ‘aﬁ
Q5 Qs 1 01

|af=2

p
dydr > 0

and for
p>3 (21)
we obtain the following limit relation:
||uHW3,1(QT) — tooase—0 (e>0).
It should be noted that the inequality (21) implies the embedding

W2 (Qr) c C(Qr).

For the norm ||b|| we have

q7T;QT7

1/r

1 1 r/q
15ell, ey = /0</1|bg|qu> i) <

P {‘ 0%9/0y® ‘ 99 /ot }
- 00/0y1" | ime 11100/0y1" |l 2
Hence for 1 9
w>2— Pl (22)
we obtain

||b5||q,r;QT S C1 (Q7 T) 9

where the constant ¢; depends only on ¢ and r, and is independent of e, ¢ € (0,1].
Thus, if p > 2 — % — %, then d, 0 < < % can be chosen such that u (z,t) is a
solution of the problem (16)-(17) for any € > 0, |ul| ., < const, [[bell, .o, < @1
uniformly. However, H'LLHWZ?J(QT) — t+ooase — 0.
It follows that, under the conditions of Theorem 1, equalities (2) cannot be
replaced by inequalities (without additional assumptions).

4. Resolvability theory

Consider the boundary value problem (1) with the conditions A.1) - A.3) and
the following Lipschitz condition.
A.4) Let

|f($7t7u777) _f(x?t7u7§)’ S b2 (x7t?u7£777) : |/rl_€‘
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for almost all (z,t) € Qr and for all (u,&,n) € Rx R" x R"™, where by (x,t,u,&,n)
is a measurable function in (z,t) for all (u,&,n) € R x R™ x R", continuous in
(u,&,n) for almost all (z,t) € Qr, and for any fixed [ > 0

bay (xz,t) = sup {bz (z,t,u,&§,n) |Jul < LI <1, |n| <1}

belongs to Ly, (Qr).,p >n+2,9g>p, 7> p.
Recall the well-known definitions.

Definition 1. The function ut (x,t) from Wy (Qr) with p > n+2 is called the
upper solution of problem (1) if

Aut — % < f(x,t,u™, Du™) a.e.in Qr,
ut (z,1)]pg, = @ (z,t), 2 €09, t e (0,T),
ut (z,t) > (z), v€Q.

Definition 2. The function u™ (z,t) from W' (Qr) with p > n + 2 is called a
lower solution to problem (1) if

Aui - 837; Z f(.’L',t,’u,i,Duf) a.e. in QT7
U oo, S @ (x,t), €09, te(0,T),
u(z,0) <Y (r), ze€Q.

Lemma 5. Let a real-valued function Fy(z,t,u,§), defined on Qr x R x R",
satisfy the Carathéodory condition A.1) with f = Fy (x,t,u,§) and

sup  |Fo (., uw, &) € Ly (Qr) withp >n+ 2. (23)
(u,)ERXR™

Then the boundary value problem
Ay — % = Fy(z,t,u, &), (z,t)€ Qr,
u]aQT =@ (z,t),z€0Q, te(0,T),
u(z,0)=v¢(z), =€,

where ¢ € Wg_l/p’l (0Qr), Y€ Wg_Z/p (Q), has a solution u (z,t) € Wg’l (Qr).
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Proof. Consider the boundary value problem
Au— 2 = Fy(z,t,9,D0), (z,t) € Qr,
ulpg, = ¢ (z,t), x € 0Q, t€(0,T),
ul,_g=v%(x), x€

for an arbitrary function 9 (z,t) € C*° (QT) Then, according to the well-known
linear theory of parabolic problems, this boundary value problem for any function
¥ € C0 (Qr) has a solution u (z,t) from W2 (Qr), uw= A9, which, by virtue
of (23), satisfies the inequality

HUHWEJ(QT) <c, (24)

holds, where the constant c; is independent of 9 (z,t) € C*° (QT)
The operator A : C'Y (Qr) — Wﬁ’l (Qr) (p > n+2) is continuous and, due

to the compact embedding of Wp2 1 (Qr) — C*0 (QT), is a completely continuous
operator from C*° (Qr) to C'? (Qr). By virtue of estimate (24), there exists a
ball in the space C'9 (QT), which the operator A transforms into itself. Then,
according to the well-known Schauder theorem, the operator A has a fixed point
w(z,t) in C10 (QT) , which, by the definition of the operator A, then belongs to

the space I/sz’1 (Qr). Lemma 5 is proved. |

Let us now define for a function u (x,t) from Wg’l (Qr) with p > n+2 the
truncation operator ¢ by the relation

ut (x,t) for u(x,t) >ut (x,t),
ou(x,t) =< u(x,t) foru (z,t) <u(zt) <ut(z,t),
u” (z,t) foru(z,t) <u” (x,t),
and consider the boundary value problem
Ay — % = f(x,t,ou,Du), (z,t) € Qrp,
ulpg, = ¢ (z,t), x €0Q, t€(0,T), (25)

u(x,0) =1 (z), x el
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Lemma 6. Let the function f (x,t,ou, Du) satisfy the conditions A.1) -A.4) with
p>n+2,pc Wg_l/p’l (0Qr) and ¢ € W;_Q/p (Q). Let u(x,t) from Wp2’1 (Qr)
be a solution of the problem (25) . Then

u (z,t) <u(z,t) <ut (x,t), (x,t)€Qr. (26)
Proof. For the function w = u — u™, we have
Aw — %—‘: > f(x,t,ou, Du) — f (z,t,ut, Du*), (x,t) € Qr,
wlpg, <0,z €09, te€(0,1), (27)
w(z,0) <0, ze.
Let us now assume the converse of the lemma. Then the set
G ={(z,t) € Qr|w (z,t) > 0},

is not empty and

AOJ B % Z f ($,t,u+,DU) B f ($7t7u+’DU+) ’ (:L"t) € QT'

Hence, due to condition A.4), we obtain

dw

Aw—7

> —byy (z,t) - |Dw|, (z,t) € Qr,

where by (z,t) = by (z,t,ut (z,t), Dut (x,t), Du(x,t)) and by € Ly, (Qr) with
p >n+2,qg > p,r >p Then from the results of [7, pp. 58-71] it follows
that w (x,t) reaches a strong positive maximum at the boundary (Qr). This
contradicts the boundary condition in (27). Thus, it is proved that u (x,t) <
ut (z,t) in the domain Q7. The inequality u™ (z,t) < u (z,t) is proved similarly
in Q7. Lemma 6 is proved. <

Theorem 2. Let conditions A.1) - A.4) be satisfied with some p > n + 2,
Y € Wg_l/p’l (0QT) and ¢ € Wg_Q/p (Q). Let there exist upper u™ (x,t) and
lower u™ (x,t) solutions of the problem (1) from Wg’l (Qr) such that u™ (z,t) >

u” (x,t) in Qr. Then there erists a solution u(x,t) of the problem (1) from
2,1
Wy (Qr) and

u” (z,t) <ul(z,t) <u' (z,t), (x,t) € Qr.
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Proof. Let

M = max {maxu+ (z,t), —minu~ (z, t)} .
Qr Qr Qr

Then [lull, o, <M and by Theorem 1

etz gy < @ (M Nellyyzvimt g Il z-2rm gy ) -
By virtue of the Sobolev embedding theorem [9], we have

lllono(ar) < Co - lully21 gy (0> 7 +2), (28)

where the positive constant Cy is independent of the function u € WS 1 (Qr).
Then we obtain

max | Du (7, 1)| < M, My =Cy - ® (M, 1l gy 2101 gy > 1y 2270 )

Define the function
f($7t7ua£) fOT‘ |£| S M27

Fl(fl‘»tv“’g):{ f(:):,t,u,Mz'%> for [€] > Ma,

where
My = Inax{Ml,max }Duﬂ , max ‘Du_’} .
Qr Qr

This function satisfies conditions A.1)-A.3) with the corresponding inequality

b(x,t,u) + by (z,t,u) - [§]F for [§] < My,

<
\Fl(:r,t,u,fﬂ_{ b(z,t,u) + by (z,t,u) - MY for |£] > Ms.

The function Fj also satisfies condition A.4) with the corresponding function bs.
Consider now the boundary value problem

Au — % = [ (z,t,ou, Du), (z,t) € Qr,
ulag, = # (x,1), © €09, t€(0,T), (29)

ul,_g = (x), x €.
The function

Fi(a,tout (2,0),)  for u>u* (2,1),

F1(x,t,u,§): Fl(:n,t,u(x,t),f) fO’I” u’(x,t)gu(:c,t)gu*(x,t),

Fi(z,tu™ (2,t),8)  for u<u™ (1)
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satisfies the conditions of Lemma 5, and

Fy (z,t,u(x,t), Du(z,t)) = Fy (x,t,0u(x,t), Du(x,t)).

Therefore, Lemma 5 is applicable to problem (29), due to which there exists
a solution u (z,t) of this problem from the space Wg’l (Qr), p>n—+2.

The function u™ (x,t) is the upper solution and u™~ (z,¢) is the lower solution
of the problem

Au — %7; = F (z,t,u,Du), (x,t) € Qr,
ulpg, = ¢ (2,1), 2€0Q, t€(0,T), (30)
u(z,0) =9 (z), = €.
By Lemma 6 we have
u” (w,t) <u(x,t) <ut (x,t), (2,t) € Qr

and consequently ou (z,t) = wu(x,t). So the obtained solution w (z,t) of the
problem (29) is also a solution of the problem (30).

Now, applying Theorem 1 to the solution w (z,t) of the problem (30), we
obtain

il @py < @ (Mo 1€ lya-17m a0, - 1 lya-2rm(gy ) -

Then it follows from the embedding inequality (28) that
moax|Dul < My A My =Cp-® (M, 1l 21t o ||¢||W3,2/p(m) .

Since for || < M; < My the function F; = f, we finally deduce that the
solution wu (z,t) of the problem (30) is the solution of the problem (1). Theorem
2 is proved. |

5. Maximum principle and condition A.4)

Let g (z,t, &) be a function defined on Q7 x R™ with values in R and satisfying
Carathéodory conditions, i.e. let it be measurable in (z,t) for all £ € R™, con-

tinuous in ¢ for almost all(x,t) € Q7 and such that the function sup |g (z,t,§)]
lgl<t

belongs to the space L, (Qr) with some p > n + 2 for any fixed [ > 0.
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For an arbitrarily fixed function ¥ (z,t) from I/Vp2 1 (Qr), consider the follow-
ing inequalities for the function w (z,t) from Wi (Qr):

Aw_%Zg(x’tvD’ﬁ—&—DOJ)_g(l',t,Dﬂ), (ﬁ,t)GQT,
wlog, <0, €09, t€(0.1), (51

wl_g <0, z e

If the function g satisfies only the above conditions, then condition (31) does
not imply the inequality

w(z,t) <0, (x,t) € Qr (32)

in general.

Moreover, if the Lipschitz condition A.4) is replaced by the Holder condition
of the form

A5 |f (zt,u,n) — f(z,t,u, &) < by (2, t,u, &,m) - In— €Y, 0< A< 1 with
the same function by from the condition A.4), then, with any index 0 < A < 1,
for the function g the inequality (32) does not follow from (31) in general case.

Remark. For an arbitrarily fixed function  (z, t) from W' (Qr) (p > n +2),
consider the following inequalities for the function w (x,t) from sz 1 (Qr):

Aw—%_c(xvt)w Zg(a:,t,Dz?—i—Dw)—g(m,t,Dﬁ), (.fU,t) S QT;
w[aQT <0, z€09Q, te(0,7), (33)

wl_g <0, z€Q,

with the function ¢ (z,t) from L, (Qr) (p > n+2) and ¢(z,t) > 1 in Q7. Then
inequalities (33) and the Holder condition A.5) with A, 0 < A < ”T'fl, do not
imply inequality (32) for the function g in the general case.

6. Some applications

Choosing functions from different ”test” sets of functions as upper and lower
solutions, one can obtain various existence theorems for solutions of boundary
value problems of the form (1).

Let us consider as a ”test” set the functions of the form

u(z,t) =,

where 7 is a real number.
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Theorem 3. Let conditions A.1)-A.}) be satisfied with some p > n+ 2, ¢ €

W,?_l/p’l (0QT) and ¢ € I/VpQ_p/2 (Q). Let the functions f,¢ and 1 be such that
there are two numbers 7 and 7=, Tt > 77 which satisfy

f(z,t,77,0) <0< f(z,t,77,0) , (z,t) € Qr,
T <pxt) <7t zed, te(0,T),
7= <Y (z,t) <71T, 2.

Then there exists a solution @ (x,t) of the boundary value problem (1) in W' (Qr)
and

T Sﬁ(x7t) STJra ((IZ,t) EQT-

To prove this theorem, it suffices to apply Theorem 2 with ™ = 77 and
u =T .
Let us now take the functions of the form

e+t

t) =
wla,t) =7

as a "test” set, where 7 is a real number.

Theorem 4. Let conditions A.1) -A.4) be satisfied with some p > n+ 2, ¢ €

W]?_l/p’l (0Qr) and ¥ € Wp2_2/p (Q). Let the functions f, and ¢ be such that
there are two numbers 7+ and 7=, T > 7~ which satisfy

f <a:,t,7'+ . |z|2+t,r+ :c) >nrt — %, (z,t) € Qr,
2 _
flot, 7 |x|2+t,7'_ :U) <ntT =T, (x,t) € Qr,
2 2
— \x|2+t < CC,t) < T |$|2+t’ (a:,t) € 0Q7,
2 2
<@ <t I Teq

Then there exists a solution @ (x,t) of the boundary value problem (1) in W' (Qr)

and
2

2

|2

\x!Q +t

<a(z,t) <7t S

(.1', t) € QT-

2
2

|z|“+t

To prove this theorem, it suffices to apply Theorem 2 with u* = 77+ -

- |az\2+t

andu” =171 5
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Remark 2. Similarly, we obtain a theorem on the solvability of the boundary
value problem (1) if, as a “test” set of functions, we take functions of the form

. |z — xo|® + |t — to]
2

u(z,t) =71
with corresponding 7, 77 € R and xg € R™,ty € R.
Let us now take the functions of the form
u(z,t) =ug (z,t) + 7 - 9o (z,1t)
as a "test” set, where ug (x,t) is a solution of the problem

Au _%: ’ (ZE,t)E QTa
uolog, = ¢ (x,t), x € 99, t € (0,T),

ul,_og=v¢(x), x €
and Y (x,t) is some first eigenfunction of the boundary value problem

Aty — % + A% = 0, (x,t) € Qr,
190|8QT - O, (1‘,75) € aQ X (O,T)’

with Jg (x,t) > 0 in Q7, 7 is a real number, and \; is an eigenvalue.

Theorem 5. Let conditions A.1) -A.4) be satisfied with some p > n+ 2, ¢ €
W,?_l/p’l (0QT) and Y € Wg_Q/p (). Let the functions f, and ¢ be such that

there are two numbers 7+ and 7=, T > 7~ which satisfy

f (%,t, ug + T+190,DUO + 7'+D190) + )\17’Jr -ty > 0, (.I',t) € QT,

[ (x,t,uo + 77 Y0, Dug + 7~ DVg) + M7~ - U9 <0, (,t) € Qr.

Then there exists a solution u(x,t) of the boundary value problem (1) from the
space Wyt (Qr) and

up+7" 9o <u(x,t) <ug+7t Do, (x,t) € Qr.

To prove this theorem, it suffices to apply Theorem 2 with u™ = ug + 77 -9
and v~ =ug+ 7" - Y.



On Equations of the Form Au — g—‘t‘ = f(z,t,u, Du) 157

Remark 3. Using the change ¥ (x,t) — u(x,t), defined by the relation u =
S (z,t,9 (z,t)) with a smooth function S, we can reduce finding the upper u™ and
the lower u~ solutions of the boundary value problem (1) to finding the upper
97 and the lower 9~ solutions of another boundary value problem induced by the
function S.
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