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On Equations of the Form ∆u− ∂u
∂t = f (x, t, u,Du)

R.A. Amanov*, A.I. Ismailov

Abstract. The paper describes an interpolation method for obtaining a priori estimates
for strong solutions of semilinear parabolic equations with unbounded singularities on the
right-hand side, provided that there is a first a priori estimate in the space of summable
functions.
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1. Introduction

The initial-boundary value problem for a semilinear second-order parabolic
equation is studied. We consider the problem of the existence of a priori estimates
for a solution in the Sobolev space in terms of its norm in the Lebesgue space.
The growth conditions for the nonlinearities are found for which this problem has
a solution.

Let R+ ≡ {t0 ∈ R : t0 ≥ 0}. Let us introduce the following notations: x =
(x1, ..., xn) is a point in the space Rn; Ω ⊂ Rn is a bounded domain with the
boundary ∂Ω from the class C2; Qτ = Ω× (t0, t0 + τ) is a cylindrical domain in
Rn+1, t0, τ ∈ R+; ∂Qτ = ∂Ω× (t0, t0 + τ) is a lateral surface area of the cylinder
Qτ ; QT = Ω× (0, T ) is a cylinder of height T and (QT ) =

{
(x, t) | x ∈ Ω̄, t = 0

}⋃
(∂Ω× [0, T ]) is a parabolic boundary of QT .
All functions introduced below are assumed to be real-valued functions. The

following functional spaces have been used [8]: the space of summable functions
Lp (QT ) , p ≥ 1, with the norm

∥u∥p;QT
=

(∫ T

0

∫
Ω
|u (x, t)|p dxdt

)1/p

, ∥u∥∞;QT
= lim

p→∞
∥u∥p;QT

;
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anisotropic space of summable functions Lq,r (QT ) , q, r ≥ 1, with the norm

∥u∥q,r;QT
≡ ∥u∥Lq,r(QT ) =

(∫ T

0

(∫
Ω
|u (x, t)|q dx

)r/q

dt

)1/r

;

anisotropic Sobolev space W 2,1
p (QT ) with the norm

∥u∥
W 2,1

p (QT )
≡ ∥u∥|p;QT

+
n∑

i=1

∥∥∥∥∂2u∂x2i

∥∥∥∥
p;QT

+

∥∥∥∥∂u∂t
∥∥∥∥
p;QT

.

2. Basic a priori estimate

Consider the following boundary value problem:
∆u− ∂u

∂t = f (x, t, u,Du) , (x, t) ∈ QT ,
u|∂QT

= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u (x, 0) = ψ (x) , x ∈ Ω.

(1)

Here ∆ is the Laplace operator, u = u (x, t) and Du ≡ Dxu (x, t) is the gradient
of the function u (x, t).

We consider this problem in the class of real functions from the Sobolev space
W 2,1

p (QT ) for p > n + 2, so that the boundary function φ (x, t) belongs to the

space W
2− 1

p
,1

p (∂QT ) and ψ (x) ∈W
2− 2

p
p (Ω) (see [2, p. 389]).

Regarding the function f (x, t, ξ0, ξ1) , it is assumed that the following condi-
tions are satisfied:

A.1) Let the function f (x, t, ξ0, ξ1) be defined on Q̄T ×R×Rn with values in
R and satisfy the Carathéodory condition, i.e. let it be measurable with respect
to (x, t) for all (ξ0,ξ1) ∈ R×Rn and continuous with respect to (ξ0,ξ1) for almost
all (x, t) ∈ QT .

A.2) Let

|f (x, t, ξ0, ξ1) | ≤ b (x, t, ξ0) + b1 (x, t, ξ0) · |ξ1|µ1

for almost all (x, t) ∈ QT and for all ξ0 ∈ R, ξ1 ∈ Rn, with non-negative
carathéodorian functions b (x, t, ξ0) and b1 (x, t, ξ0) such that for any δ ≥ 0 the
function

b̂δ (x, t) ≡ sup {b (x, t, ξ0) | |ξ0| ≤ δ}

belongs to Lp (QT ) , p > 1 and p > n+ 2; the function

b̂1,δ (x, t) ≡ sup {b1 (x, t, ξ0) | |ξ0| ≤ δ}
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belongs to Lq,r (QT ) with q ≥ p, r ≥ p.
A.3) Let

µ ≡ µ1 = 2− n

q
− 2

r
. (2)

For elliptic operators, this problem was considered in [1, 2, 3, 4, 5]. In [1, 2, 3,
4], it is assumed that a nonlinear function f (x, u (x) , Du (x)) is continuous in all
its arguments. In this case, the well-known S.N. Bernstein growth condition on a
non-linear function is sufficient for the a priori estimate in ∥u∥∞;Ω to follow from
the a priori estimate in ∥Du∥∞;Ω and, hence, the estimate in ∥u∥W 2

p (Ω). In [5, 6],

a boundary value problem for elliptic and parabolic equations, respectively, was
considered, where the non-linear function f belongs to the space Lp.

In this paper, we do not assume that the nonlinear function is continuous
with respect to all of its arguments. Instead, we require that this non-linear
function belongs to the space Lp (QT ) for an arbitrarily fixed function u (x, t)

from W 2,1
p (QT ) with p > n+ 2.

A new exact growth condition for the considered nonlinear function f (x, t, ξ0, ξ1)
with respect to ξ0 ∈ R, ξ1 ∈ Rn is obtained, under which a priori estimate in
∥Du∥∞;QT

follows from the a priori estimate in ∥u∥∞;QT
of the solution of prob-

lem (1).
One particular example shows the unimprovability of the corresponding growth

index. The theory of solvability of problems of the form (1) is considered under
the existence condition for upper and lower solutions of these problems. Here,
along with the theorem on a priori estimate in ∥u∥

W 2,1
p (QT )

, the maximum prin-

ciple is used for Aleksandrov type parabolic equations (see [7, pp. 58-71]).
The maximum principle for the considered problem (1) in the Sobolev space

W 2,1
p (QT ) with p > n + 2. is discussed in examples. Based on the general solv-

ability theorem, particular theorems on the solvability of problems of the form
(1) are obtained.

To study the problem (1), we will make essential use of the embedding theorem
for the spaces W 2,1

p (QT ) and the multiplicative inequality that follows from it.
Let us formulate the embedding theorem [8] in the form we need.

Lemma 1. Let u (x, t) ∈W 2,1
p (QT ) , u|(QT ) = 0, the conditions p > n+2, q ≥ p,

r ≥ p and A.3) be fulfilled. Then

∥Du∥zx,zt;QT
≤ C1 · ∥u∥θW 2,1

p (QT )
· ∥u∥1−θ

l,m ;QT
+ C2 · ∥u∥l,m;QT

(3)

with positive constants C1 and C2, independent of the function u (x, t) from
W 2,1

p (QT ), where

θ =
1

µ
, µ =

χ0 + χ1

χ0
,
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χ0 =
1
2

[
n
(
1
l −

1
zx

)
+ 1 + 2

(
1
m − 1

zt

)]
> 0,

χ1 = 1− 1
2

[
n
(
1
p − 1

zx

)
+ 1 + 2

(
1
p − 1

zt

)]
> 0,

zx =
µ · p · q
q − p

≥ l, zt =
µ · p · r
r − p

≥ m, 1 ≤ l, m ≤ ∞ are constants and µ > 1.

(4)

Lemma 2. Let u (x, t) ∈ W 2,1
p (QT ) and the conditions A.1)- A.3) be fulfilled.

Then the operator

F0 (u) (x, t) ≡ f (x, t, u (x, t) , Du (x, t))

is a bounded and continuous operator from W 2,1
p (QT ) to Lp (QT ).

Proof. Let us estimate ∥F0 (u)∥p;QT
with the help of conditions A.1) - A.3).

From inequality (3) for Du, we have

∥Du∥zx,zt;QT
≤ C1 · ∥u∥1−θ

W 2,1
p (QT )

· ∥u∥1−θ
∞,∞;QT

+ C2 · ∥u∥∞,∞;QT
. (5)

From condition A.2) it follows that

∥F0 (u)∥p;QT
≤
∥∥∥b̂δ∥∥∥

p;QT

+ C3 ·
∥∥∥b̂1,δ∥∥∥

q,r;QT

· ∥Du∥µ zx,zt;QT

with δ = ∥u∥∞;QT
and a positive constant C3, independent of the function u (x, t)

from W 2,1
p (QT ). Here ∥u∥∞;QT

= ∥u∥∞,∞;QT
. Then, based on (4) and inequali-

ties (5), we obtain

∥F0 (u)∥p;QT
≤
∥∥∥b̂δ∥∥∥

p;QT

+∥u∥
W 2,1

p (QT )
·Φ1

(
∥u∥∞;QT

)
·
∥∥∥b̂1,δ∥∥∥

q,r;QT

+Φ2

(
∥u∥∞;QT

)
,

(6)
where Φ1,Φ2 : R+ → R+ are the increasing functions defined by the known data.
(6) proves the boundedness of the operator F0 (u).

On the other hand, p > n + 2. Then, by virtue of the Sobolev embedding
theorem [9], it follows that the embedding operator I : W 2,1

p (QT ) → Lzx,zt (QT )
is completely continuous. By virtue of (6), the operator F0 : Lzx,zt (QT ) →
Lp (QT ) is bounded and, by the general property of the superposition operator,
is continuous.

Thus the operator F0 : W 2,1
p (QT ) → Lp (QT ) is completely continuous as

a composition of completely continuous and continuous operators. Lemma 2 is
proved. ◀
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We have

∆u− ∂u

∂t
= f (x, t, u,Du) =

f (x, t, u,Du)

1 + |Du|µ
· (1 + |Du|µ) .

Hence, for the function u (x, t)
∆u− c (x, t)u (x, t)− ∂u

∂t = f0 (x, t) + f1 (x, t) · |Du|µ , (x, t) ∈ QT ,

u|∂QT
= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u (x, 0) = ψ (x) , x ∈ Ω,

(7)

where

f1 (x, t) =
f (x, t, u,Du)

1 + |Du|µ
, f0 (x, t) = f1 (x, t)− c (x, t)u (x, t) ,

c (x, t) = b̂δ (x, t) ≥ 0 with δ = ∥u∥∞;QT
.

Consider in the space W 2,1
p (QT ) with p > n+ 2 the boundary value problem

∆ϑ− c (x, t)ϑ− ∂ϑ
∂t = f1 (x, t) · |Dϑ|µ + τ · f0 (x, t) , (x, t) ∈ QT ,

ϑ|∂QT
= τ · φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

ϑ (x, 0) = τ · ψ (x) , x ∈ Ω,

(8)

with the parameter τ ∈ [0, 1] and the functions c (x, t) , f1 (x, t) and f0 (x, t) de-
fined above.

For problem (8), the following lemma on the uniqueness of the solution is
valid.

Lemma 3. For any fixed τ, the problem (8) has at most one solution u (x, t)
from W 2,1

p (QT ) , p > n+ 2.

Proof. Assume the contrary. Then for the difference ω = ϑ−z of two possible
solutions ϑ and z, we have

∆ω − c (x, t)ω − ∂ω
∂t = f1 (x, t) ·

∑n
i=1 hi (x, t) ·Diω, (x, t) ∈ QT ,

ω|∂Q = 0, x ∈ ∂Ω, t ∈ (0, T ) ,

ω (x, 0) = 0, x ∈ Ω,
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where

hi (x, t) =

∫ 1

0
Hi (x, t, ν) dν,

Hi (x, t, ν) = µ ·

[
n∑

k=1

(ν ·Dkω +Dkz)
2

]µ
2
−1

· (ν ·Diω +Diz) (x, t)

for
∑n

k=1 (ν ·Dkω +Dkz)
2 (x, t) ̸= 0 and

Hi (x, t, ν) = 0

for
∑n

k=1 (ν ·Dkω +Dkz)
2 (x, t) = 0, i = 1, ..., n.

Since c (x, t) ≥ 0, c (x, t) ∈ Lp (QT ), f1 (x, t)·hi (x, t) ∈ Lq,r (QT ) (i = 1, ..., n)
and p > n+2, from the results of [7, pp. 58-71] it follows that ω (x, t) ≡ 0 in QT .
Lemma 3 is proved. ◀

Now let ϑ1 and ϑ2 be solutions to problem (8) corresponding to the values
τ1 and τ2 (τ2 > τ1) of the parameter τ , respectively. Then for the difference
ϑ̃ = ϑ2 − ϑ1, we have

∆ϑ̃− c (x, t) ϑ̃− ∂ϑ̃
∂t = f1 (x, t)

∑n
i=1 h̃i (x, t)Diϑ̃+ (τ2 − τ1) f0 (x, t) , (x, t) ∈ QT ;

ϑ̃|∂QT
= (τ2 − τ1)φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

ϑ̃ (x, 0) = (τ2 − τ1) · ψ (x) , x ∈ Ω,

where

h̃i (x, t) =

∫ 1

0
H̃i (x, t, ν) dν, H̃i (x, t, ν) =

= µ ·

[
n∑

k=1

(
ν ·Dkϑ̃+Dkϑ1

)2]µ
2
−1

·
(
ν ·Diϑ̃+Diϑ

)
(x, t)

for
∑n

k=1

(
ν ·Dkϑ̃+Dkϑ1

)2
(x, t) ̸= 0 and

H̃i (x, t, ν) = 0

for
∑n

k=1

(
ν ·Dkϑ̃+Dkϑ1

)2
(x, t) = 0.

Assume
K = (τ2 − τ1) · (1 + ∥u∥∞) , τ2 > τ1.

Lemma 4. ∥ϑ2 − ϑ1∥∞ ≤ (τ2 − τ1) ·
(
1 + ∥u∥∞;QT

)
.
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Proof. For the function
(
ϑ̃−K

)
, we have

∆
(
ϑ̃−K

)
− c (x, t)

(
ϑ̃−K

)
− ∂

∂t

(
ϑ̃−K

)
=

f1 (x, t)
∑n

i=1 h̃i (x, t) ·Di

(
ϑ̃−K

)
+ (τ2 − τ1) f0 (x, t) + c (x, t)K, (x, t) ∈ QT ;(

ϑ̃−K
)∣∣∣

∂QT

= (τ2 − τ1)φ−K, x ∈ ∂Ω, t ∈ (0, T ) ,

(
ϑ̃−K

)∣∣∣
t=0

= (τ2 − τ1) · ψ −K, x ∈ Ω.

Further

c (x, t)K + (τ2 − τ1) f0 (x, t) = (τ2 − τ1) ·
[
f0 (x, t) + c (x, t)

(
1 + ∥u∥∞;QT

)]
=

= (τ2 − τ1)
[
c (x, t)

(
∥u∥∞;QT

− u (x, t)
)
+ (f1 (x, t) + c (x, t))

]
≥ 0

in QT and (
ϑ̃−K

)∣∣∣
∂QT

= (τ2 − τ1)φ− (τ2 − τ1)
(
1 + ∥u∥∞;QT

)
=

= (τ2 − τ1) ·
[
φ− 1− ∥u∥∞;QT

]
≤

≤ (τ2 − τ1) ·
[
φ− ∥u∥∞;QT

]
≤ 0,(

ϑ̃−K
)∣∣∣

t=0
= (τ2 − τ1)ψ (x)− (τ2 − τ1)

(
1 + ∥u∥∞;QT

)
=

= (τ2 − τ1) ·
(
φ− 1− ∥u∥∞;QT

)
≤

≤ (τ2 − τ1) ·
[
ψ − ∥u∥∞;QT

]
≤ 0.

Then from [7, pp. 58-71] it follows that ϑ̃ ≤ Kin QT . Similarly, inequality
ϑ̃ ≥ −K is proved in Q̄T . Lemma 4 is proved. ◀

Theorem 1. Let conditions A.1) and A.2) be satisfied. Then there exists a
function Φ : R3

+ → R+ increasing in each argument such that for any possible

solution u ∈W 2,1
p (QT ) of problem (1) the a priori estimate

∥u∥
W 2,1

p (QT )
≤ Φ

(
∥u∥∞;QT

, ∥φ∥
W

2−1/p,1
p (∂QT )

, ∥ψ∥
W

2−2/p
p

(Ω)

)
(9)

holds.
The function Φ depends only on the known data included in the conditions of

the theorem (including
∥∥∥b̂δ∥∥∥

p;QT

,
∥∥∥b̂1,δ∥∥∥

q,r;QT

with δ = ∥u∥∞;QT
).
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Proof. Consider a parametric family of problems (8). It should be noted that,
by Lemma 3, the solution of problem (8) for τ = 1 coincides with the solution of
problem (7) and (in view of the adopted notation) with the solution of problem
(1).

Let ϑ1 and ϑ2 be solutions to problem (8), corresponding to the values τ1 and
τ2 (τ2 > τ1) of the parameter τ , respectively. Then, by Lemma 4, we have

∥ϑ2 − ϑ1∥∞;Q ≤ (τ2 − τ1) ·
(
1 + ∥u∥∞;QT

)
. (10)

On the other hand, this function is a solution to the problem

∆ϑ̃− c (x, t) ϑ̃− ∂ϑ̃
∂t = f1 (x, t) (|Dϑ2|µ − |Dϑ1|µ) + (τ2 − τ1) f0 (x, t) , (x, t) ∈ QT ;

ϑ̃
∣∣∣
∂QT

= (τ2 − τ1)φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

ϑ̃
∣∣∣
t=0

= (τ2 − τ1) · ψ (x) , x ∈ Ω.

Consequently∥∥∥∆ϑ̃− c (x, t) ϑ̃− ∂ϑ̃
∂t

∥∥∥
p;QT

=

= ∥f1 · |Dϑ2|µ − f1 · |Dϑ1|µ + (τ2 − τ1) f0 ∥p;QT
≤

≤
∥∥∥f1 · ∣∣∣Dϑ̃+Dϑ1

∣∣∣µ + f1 · |Dϑ1|µ + (τ2 − τ1) f0

∥∥∥
p;QT

≤

≤
∥∥∥f1 · [2µ−1

(∣∣∣Dϑ̃∣∣∣µ + |Dϑ1|µ
)
+ |Dϑ1|µ

]
+ (τ2 − τ1) f0

∥∥∥
p;QT

≤

≤ 2µ−1 · ∥f1∥q,r;QT
·
∥∥∥Dϑ̃∥∥∥µ

∞;QT

+

+2µ · ∥f1∥q,r;QT
· ∥Dϑ1∥µ∞;QT

+ (τ2 − τ1) · ∥f0∥p;QT
.

(11)

On the other hand, it follows from (5) that∥∥∥Dϑ̃∥∥∥µ
∞;QT

≤ 2µ−1 ·
(
Cµ
1 ·
∥∥∥ϑ̃∥∥∥

W 2,1
p (QT )

·
∥∥∥ϑ̃∥∥∥µ−1

∞;Q
+ Cµ

2 ·
∥∥∥ϑ̃∥∥∥µ−1

∞;QT

)
. (12)

By virtue of the well-known linear theory of parabolic problems, the inequality

∥∥∥ϑ̃∥∥∥
W 2,1

p (QT )
≤ A ·

∥∥∥∥∥∆ϑ̃− c · ϑ̃− ∂ϑ̃

∂t

∥∥∥∥∥
p;QT

+

+(τ2 − τ1) · ∥φ∥W 2−1/p,1
p (∂QT )

+ (τ2 − τ1) · ∥ψ∥W 2−2/p
p (Ω)

)
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is fulfilled. Here A = A
(
Q,n, p, q, ∥c∥p;QT

)
.

Then, using inequalities (10)-(12), we obtain∥∥∥ϑ̃∥∥∥
W 2,1

p (QT )
≤ A · 2µ−1 · ∥f1∥q,r;QT

×

×
(
Cµ
1 · 2µ−1 · (τ2 − τ1)

µ−1 ·
(
1 + ∥u∥∞;QT

)µ−1
·
∥∥∥ϑ̃∥∥∥

W 2,1
p (QT )

+

+Cµ
2 · 2µ−1 · (τ2 − τ1)

µ ·
(
1 + ∥u∥∞;QT

)
µ
)
+

+2µ ·A · ∥f1∥q,r;QT
· ∥Dϑ1∥µ∞,QT

+A · (τ2 − τ1) · ∥f0∥q;QT
+

+A · (τ2 − τ1) ·
(
∥φ∥

W
2−1/p,1
p (∂QT )

+ ∥ψ∥
W

2−2/p
p (Ω)

)
=

= A · 22µ−2 · Cµ
1 · ∥f1∥q,r;QT

· (τ2 − τ1)
µ−1 ·

(
1 + ∥u∥∞;QT

)µ−1
·
∥∥∥ϑ̃∥∥∥

W 2,1
p (QT )

+

+A · Cµ
2 · 22µ−2 · ∥f1∥q,r;QT

· (τ2 − τ1)
µ ·
(
1 + ∥u∥∞;QT

)
µ+

+2µ ·A · ∥f1∥q,r;QT
· ∥Dϑ1∥µ∞,QT

+

+A · (τ2 − τ1) ·
(
∥f0∥p;QT

+ ∥φ∥
W

2−1/p,1
p (∂QT )

+ ∥ψ∥
W

2−2/p
p (Ω)

)
.

Hence it follows that∥∥∥ϑ̃∥∥∥
W 2,1

p (QT )
≤ 2A ·

(
Cµ
2 · 22µ−2 · ∥f1∥q,r;QT

+ ∥f0∥p;QT
+

+ ∥φ∥
W

2−1/p,1
p (∂QT )

+ ∥ψ∥
W

2−2/p
p (Ω)

)
+

+A · 2µ+1 · ∥f1∥q,r;QT
· ∥Dϑ1∥µ∞,QT

, (13)

for
0 < τ2 − τ1 ≤ h, (14)

where

h =
(
ACµ

1 2
2µ−1

)− 1
µ−1 · ∥f1∥

− 1
µ−1

q,r;QT
·
(
1 + ∥u∥∞;QT

)−1
,

τ1 and τ2 are any numbers from the interval [0, 1], satisfying the inequality (14),
and ϑ1, ϑ2 are the corresponding solutions of the problem (8) from W 2,1

p (QT ).
So the inequality (13) becomes∥∥∥ϑ̃∥∥∥

W 2,1
p (QT )

≤ A0 +A · 2µ+1 · ∥f1∥q,r;QT
· ∥Dϑ1∥µ∞,QT

, (15)
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where the constant A0 is defined from (13):

A0 = 2A
(
Cµ
2 2

2µ−2 · ∥f1∥q,r;QT
+ ∥f0∥p;QT

+ ∥φ∥
W

2−1/p,1
p (∂QT )

+ ∥ψ∥
W

2−2/p
p (Ω)

)
.

Denote τ (k−1) = τ1, τ
(k) = τ2, ϑ

(k−1) = ϑ1, ϑ
(k) = ϑ2. From the inequality

(15), we obtain∥∥∥ϑ(k)∥∥∥
W 2,1

p (QT )
≤ A0 +

∥∥∥ϑ(k−1)
∥∥∥
W 2,1

p (QT )
+A · 2µ+1 · ∥f1∥q,r;QT

·
∥∥∥Dϑ(k−1)

∥∥∥µ
∞;QT

for 0 < τ (k) − τ (k−1) ≤ h, τ (k−1), τ (k) ∈ [0, 1]. Hence, by virtue of the inde-
pendence of h of the indicated values τ (k−1), τ (k) and the embedding inequality
W 2,1

p (QT ) → C1,0
(
Q̄T

)
with p > n+ 2∥∥∥Dϑ(k−1)
∥∥∥
∞;QT

≤ const ·
∥∥∥ϑ(k−1)

∥∥∥
W 2,1

p (QT )
,

after a finite number of iterations, we obtain the assertion of Theorem 1. In this
case, the first iteration (k = 1) corresponds to t(0) = 0 and ϑ(0) = 0. Theorem 1
is proved. ◀

Remark 1. Theorem 1 remains valid for equations of the form (1) under other
boundary conditions, where the maximum principle is valid for the corresponding
linear boundary value problem.

3. Non-improvability of the index µ = 2− n
q
− 2

r

In this section, we give an example of a boundary value problem of the form
(1) for which all the conditions of Theorem 1 are satisfied, except condition A.3),
i.e., equalities (2). For this counterexample, the corresponding inequality holds
and it is shown that the assertion of Theorem 1 is not true.

Let n = 1 and QT = (−1, 1)× (0, 1) ,

∂2u

∂x2
− ∂u

∂t
= bε (x, t) ·

∣∣∣∣∂u∂x
∣∣∣∣µ , (x, t) ∈ QT , (16)

u (−1, t) =
t− 2

(2− t+ ε)δ
≡ φ0 (t) , u (1, t) =

t

(2− t+ ε)δ
≡ φ1 (t) , t ∈ (0, 1) ;

u (x, 0) =
x− 1

(x2 + 1 + ε)δ
≡ ψ (x) , x ∈ (−1, 1) , (17)

with bε (x, t) =
∂2u
∂x2

− ∂u
∂t

| ∂u∂x |
µ .
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Here 0 < ε ≤ 1, 0 < δ < 1
2 , µ > 2 − n

q − 2
r = 2 − 1

q − 2
r , q > p, r > p, p > 1

and p > 3.

This problem with the given parameters has a unique solution

u (x, t) =
x+ t− 1

(x2 + 1− t+ ε)δ
.

Assume that

1∑
i=0

∥φi∥W 2−1/p,1
p (∂(0,1))

+ ∥ψ∥
W

2−2/p
p (−1,1)

≤ c1, (18)

where c1 is a positive constant independent of ε, ε ∈ (0, 1] .

Let

u (x, t) = εk · ϑ (y, τ) , y =
x

ε
, τ =

t

ε2
, k = 1, (19)

where ϑ ∈ C∞,1
(
R2
)
and

sup
R2

|ϑ (y, τ)| <∞, sup
R2

|Dϑ (y, τ)| <∞. (20)

This choice of function u (x, t) provides the boundedness of the norm

∥u∥∞;QT
≤ sup

QT

|u| ≤ c,

where the constant c is independent of ε, ε ∈ (0, 1] . On the other hand, we have

∥u∥
W 2,1

p (QT )
=

∑
|α|≤2

∫
QT

|Dαu|p dxdt+
∫
QT

∣∣∣∣∂u∂t
∣∣∣∣p dxdt

1/p

≥

≥ ε
k−2+ 3

p ·

∑
|α|=2

∫
Qε

T

|Dαϑ|p dydτ +
∫
Qε

T

∣∣∣∣∂ϑ∂t
∣∣∣∣p dydτ

1/p

,

where Qε
T =

{
(y, τ) |εy ∈ (−1, 1) , ε2τ ∈ (0, 1)

}
. Hence, for a domain QT such

that QT ∈ Qε
T for ε ∈ (0, 1], we have

∥u∥
W 2,1

p (QT )
≤ ε

−1+ 3
p ·

∑
|α|=2

∫
Qε

T

|Dαϑ| dydτ +
∫
Qε

T

∣∣∣∣∂ϑ∂t
∣∣∣∣p dydτ

1/p

.
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Then for the function ϑ (y, τ) with∑
|α|=2

∫
Qε

T

|Dαϑ|p dydτ +
∫
Qε

T

∣∣∣∣∂ϑ∂t
∣∣∣∣p dydτ > 0

and for
p > 3 (21)

we obtain the following limit relation:
∥u∥

W 2,1
p (QT )

→ +∞ as ε→ 0 (ε > 0).

It should be noted that the inequality (21) implies the embedding

W 2,1
p (QT ) ⊂ C

(
Q̄T

)
.

For the norm ∥bε∥q,r;QT
, we have

∥bε∥q,r;QT
=

(∫ 1

0

(∫ 1

−1
|bε|q dx

)r/q

dt

)1/r

≤

≤ ε
−2+µ+ 1

q
+ 1

r ·

{∥∥∥∥ ∂2ϑ/∂y2|∂ϑ/∂y|µ
∥∥∥∥
q,r;R2

+

∥∥∥∥ ∂ϑ/∂τ

|∂ϑ/∂y|µ
∥∥∥∥
q,r;R2

}
.

Hence for

µ > 2− 1

q
− 2

r
(22)

we obtain
∥bε∥q,r;QT

≤ c1 (q, r) ,

where the constant c1 depends only on q and r, and is independent of ε, ε ∈ (0, 1] .
Thus, if µ > 2− 1

q −
2
r , then δ, 0 < δ < 1

2 can be chosen such that u (x, t) is a
solution of the problem (16)-(17) for any ε > 0, ∥u∥∞;QT

≤ const, ∥bε∥q,r;QT
≤ c1

uniformly. However, ∥u∥
W 2,1

p (QT )
→ +∞ as ε→ 0 .

It follows that, under the conditions of Theorem 1, equalities (2) cannot be
replaced by inequalities (without additional assumptions).

4. Resolvability theory

Consider the boundary value problem (1) with the conditions A.1) - A.3) and
the following Lipschitz condition.

A.4) Let

|f (x, t, u, η)− f (x, t, u, ξ)| ≤ b2 (x, t, u, ξ, η) · |η − ξ|
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for almost all (x, t) ∈ QT and for all (u, ξ, η) ∈ R×Rn×Rn, where b2 (x, t, u, ξ, η)
is a measurable function in (x, t) for all (u, ξ, η) ∈ R × Rn × Rn, continuous in
(u, ξ, η) for almost all (x, t) ∈ QT , and for any fixed l > 0

b2,l (x, t) ≡ sup {b2 (x, t, u, ξ, η) ||u| ≤ l, |ξ| ≤ l , |η| ≤ l}

belongs to Lq,r (QT ) , p > n+ 2, q > p, r > p.

Recall the well-known definitions.

Definition 1. The function u+ (x, t) from W 2,1
p (QT ) with p > n+2 is called the

upper solution of problem (1) if
∆u+ − ∂u+

∂t ≤ f (x, t, u+, Du+) a.e. in QT ,

u+ (x, t)|∂QT
≥ φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u+ (x, t) ≥ ψ (x) , x ∈ Ω .

Definition 2. The function u− (x, t) from W 2,1
p (QT ) with p > n + 2 is called a

lower solution to problem (1) if
∆u− − ∂u−

∂t ≥ f (x, t, u−, Du−) a.e. in QT ,

u−|∂QT
≤ φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u (x, 0) ≤ ψ (x) , x ∈ Ω .

Lemma 5. Let a real-valued function F0 (x, t, u, ξ), defined on QT × R × Rn,
satisfy the Carathéodory condition A.1) with f = F0 (x, t, u, ξ) and

sup
(u,ξ)∈R×Rn

|F0 (., ., u, ξ)| ∈ Lp (QT ) with p > n+ 2. (23)

Then the boundary value problem
∆u− ∂u

∂t = F0 (x, t, u, ξ) , (x, t) ∈ QT ,

u|∂QT
= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u (x, 0) = ψ (x) , x ∈ Ω ,

where φ ∈W
2−1/p,1
p (∂QT ) , ψ ∈W

2−2/p
p (Ω), has a solution u (x, t) ∈W 2,1

p (QT ).
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Proof. Consider the boundary value problem
∆u− ∂u

∂t = F0 (x, t, ϑ,Dϑ) , (x, t) ∈ QT ,

u|∂QT
= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u|t=0 = ψ (x) , x ∈ Ω

for an arbitrary function ϑ (x, t) ∈ C1,0
(
Q̄T

)
. Then, according to the well-known

linear theory of parabolic problems, this boundary value problem for any function
ϑ ∈ C1,0

(
Q̄T

)
has a solution u (x, t) from W 2,1

p (QT ) , u = Aϑ, which, by virtue
of (23), satisfies the inequality

∥u∥
W 2,1

p (QT )
≤ c1, (24)

holds, where the constant c1 is independent of ϑ (x, t) ∈ C1,0
(
Q̄T

)
.

The operator A : C1,0
(
Q̄T

)
→W 2,1

p (QT ) (p > n+ 2) is continuous and, due

to the compact embedding ofW 2,1
p (QT ) → C1,0

(
Q̄T

)
, is a completely continuous

operator from C1,0
(
Q̄T

)
to C1,0

(
Q̄T

)
. By virtue of estimate (24), there exists a

ball in the space C1,0
(
Q̄T

)
, which the operator A transforms into itself. Then,

according to the well-known Schauder theorem, the operator A has a fixed point
u (x, t) in C1,0

(
Q̄T

)
, which, by the definition of the operator A, then belongs to

the space W 2,1
p (QT ). Lemma 5 is proved. ◀

Let us now define for a function u (x, t) from W 2,1
p (QT ) with p > n+ 2 the

truncation operator σ by the relation

σu (x, t) =


u+ (x, t) for u (x, t) > u+ (x, t) ,

u (x, t) for u− (x, t) ≤ u (x, t) ≤ u+ (x, t) ,

u− (x, t) for u (x, t) < u− (x, t) ,

and consider the boundary value problem
∆u− ∂u

∂t = f (x, t, σu,Du) , (x, t) ∈ QT ,

u|∂QT
= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u (x, 0) = ψ (x) , x ∈ Ω.

(25)
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Lemma 6. Let the function f (x, t, σu,Du) satisfy the conditions A.1) -A.4) with

p > n+ 2, φ ∈W
2−1/p,1
p (∂QT ) and ψ ∈W

2−2/p

p (Ω). Let u (x, t) from W 2,1
p (QT )

be a solution of the problem (25) . Then

u− (x, t) ≤ u (x, t) ≤ u+ (x, t) , (x, t) ∈ Q̄T . (26)

Proof. For the function ω = u− u+, we have
∆ω − ∂ω

∂t ≥ f (x, t, σu,Du)− f (x, t, u+, Du+) , (x, t) ∈ QT ,

ω|∂QT
≤ 0, x ∈ ∂Ω, t ∈ (0, T ) ,

ω (x, 0) ≤ 0, x ∈ Ω.

(27)

Let us now assume the converse of the lemma. Then the set

G = {(x, t) ∈ QT |ω (x, t) > 0} ,

is not empty and

∆ω − ∂ω

∂t
≥ f

(
x, t, u+, Du

)
− f

(
x, t, u+, Du+

)
, (x, t) ∈ QT .

Hence, due to condition A.4), we obtain

∆ω − ∂ω

∂t
≥ −b̃2,l (x, t) · |Dω| , (x, t) ∈ QT ,

where b̃2 (x, t) = b2 (x, t, u
+ (x, t) , Du+ (x, t) , Du (x, t)) and b̃2 ∈ Lq,r (QT ) with

p > n + 2, q > p, r > p. Then from the results of [7, pp. 58-71] it follows
that ω (x, t) reaches a strong positive maximum at the boundary (QT ). This
contradicts the boundary condition in (27). Thus, it is proved that u (x, t) ≤
u+ (x, t) in the domain QT . The inequality u− (x, t) ≤ u (x, t) is proved similarly
in QT . Lemma 6 is proved. ◀

Theorem 2. Let conditions A.1) - A.4) be satisfied with some p > n + 2,

φ ∈ W
2−1/p,1
p (∂QT ) and ψ ∈ W

2−2/p
p (Ω). Let there exist upper u+ (x, t) and

lower u− (x, t) solutions of the problem (1) from W 2,1
p (QT ) such that u+ (x, t) ≥

u− (x, t) in Q̄T . Then there exists a solution u (x, t) of the problem (1) from
W 2,1

p (QT ) and

u− (x, t) ≤ u (x, t) ≤ u+ (x, t) , (x, t) ∈ Q̄T .
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Proof. Let

M = max
QT

{
max
QT

u+ (x, t) ,−min
QT

u− (x, t)

}
.

Then ∥u∥∞,QT
≤M and by Theorem 1

∥u∥
W 2,1

p (QT )
≤ Φ

(
M, ∥φ∥

W
2−1/p,1
p (∂QT )

, ∥ψ∥
W

2−2/p
p (Ω)

)
.

By virtue of the Sobolev embedding theorem [9], we have

∥u∥C1,0(Q̄T ) ≤ C2 · ∥u∥W 2,1
p (QT )

(p > n+ 2) , (28)

where the positive constant C2 is independent of the function u ∈ W 2,1
p (QT ).

Then we obtain

max
Q̄T

|Du (x, t)| ≤M1, M1 = C2 · Φ
(
M, ∥φ∥

W
2−1/p,1
p (∂QT )

, ∥ψ∥
W

2−2/p
p (Ω)

)
.

Define the function

F1 (x, t, u, ξ) =

{
f (x, t, u, ξ) for |ξ| ≤M2,

f
(
x, t, u,M2 · ξ

|ξ|

)
for |ξ| > M2,

where

M2 = max

{
M1,max

Q̄T

∣∣Du+∣∣ ,max
Q̄T

∣∣Du−∣∣} .
This function satisfies conditions A.1)-A.3) with the corresponding inequality

|F1 (x, t, u, ξ)| ≤
{
b (x, t, u) + b1 (x, t, u) · |ξ|µ for |ξ| ≤M2,
b (x, t, u) + b1 (x, t, u) ·Mµ

2 for |ξ| > M2.

The function F1 also satisfies condition A.4) with the corresponding function b2.
Consider now the boundary value problem

∆u− ∂u
∂t = F1 (x, t, σu,Du) , (x, t) ∈ QT ,

u|∂QT
= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u|t=0 = ψ (x) , x ∈ Ω.

(29)

The function

F̄1 (x, t, u, ξ) =


F1 (x, t, u

+ (x, t) , ξ) for u > u+ (x, t) ,

F1 (x, t, u (x, t) , ξ) for u− (x, t) ≤ u (x, t) ≤ u+ (x, t) ,

F1 (x, t, u
− (x, t) , ξ) for u < u− (x, t)
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satisfies the conditions of Lemma 5, and

F̄1 (x, t, u (x, t) , Du (x, t)) = F1 (x, t, σu (x, t) , Du (x, t)) .

Therefore, Lemma 5 is applicable to problem (29), due to which there exists
a solution u (x, t) of this problem from the space W 2,1

p (QT ) , p > n+ 2.

The function u+ (x, t) is the upper solution and u− (x, t) is the lower solution
of the problem 

∆u− ∂u
∂t = F1 (x, t, u,Du) , (x, t) ∈ QT ,

u|∂QT
= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u (x, 0) = ψ (x) , x ∈ Ω.

(30)

By Lemma 6 we have

u− (x, t) ≤ u (x, t) ≤ u+ (x, t) , (x, t) ∈ Q̄T

and consequently σu (x, t) = u (x, t). So the obtained solution u (x, t) of the
problem (29) is also a solution of the problem (30).

Now, applying Theorem 1 to the solution u (x, t) of the problem (30), we
obtain

∥u∥
W 2,1

p (QT )
≤ Φ

(
M, ∥φ∥

W
2−1/p,1
p (∂QT )

, ∥ψ∥
W

2−2/p
p (Ω)

)
.

Then it follows from the embedding inequality (28) that

max
QT

|Du| ≤M1 A M1 = C2 · Φ
(
M, ∥φ∥

W
2−1/p,1
p (∂QT )

, ∥ψ∥
W

2−2/p
p (Ω)

)
. .

Since for |ξ| ≤ M1 ≤ M2 the function F1 = f , we finally deduce that the
solution u (x, t) of the problem (30) is the solution of the problem (1). Theorem
2 is proved. ◀

5. Maximum principle and condition A.4)

Let g (x, t, ξ) be a function defined on QT ×Rn with values in R and satisfying
Carathéodory conditions, i.e. let it be measurable in (x, t) for all ξ ∈ Rn, con-
tinuous in ξ for almost all(x, t) ∈ QT and such that the function sup

|ξ|≤l
|g (x, t, ξ)|

belongs to the space Lp (QT ) with some p > n+ 2 for any fixed l > 0.
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For an arbitrarily fixed function ϑ (x, t) from W 2,1
p (QT ) , consider the follow-

ing inequalities for the function ω (x, t) from W 2,1
p (QT ):

∆ω − ∂ω
∂t ≥ g (x, t,Dϑ+Dω)− g (x, t,Dϑ) , (x, t) ∈ QT ,

ω|∂QT
≤ 0, x ∈ ∂Ω, t ∈ (0, T ) ,

ω|t=0 ≤ 0, x ∈ Ω.

(31)

If the function g satisfies only the above conditions, then condition (31) does
not imply the inequality

ω (x, t) ≤ 0, (x, t) ∈ QT (32)

in general.
Moreover, if the Lipschitz condition A.4) is replaced by the Hölder condition

of the form
A.5) |f (x, t, u, η)− f (x, t, u, ξ)| ≤ b2 (x, t, u, ξ, η) · |η − ξ|λ , 0 < λ < 1 with

the same function b2 from the condition A.4), then, with any index 0 < λ < 1,
for the function g the inequality (32) does not follow from (31) in general case.

Remark. For an arbitrarily fixed function ϑ (x, t) fromW 2,1
p (QT ) (p > n+ 2) ,

consider the following inequalities for the function ω (x, t) from W 2,1
p (QT ):

∆ω − ∂ω
∂t − c (x, t)ω ≥ g (x, t,Dϑ+Dω)− g (x, t,Dϑ) , (x, t) ∈ QT ,

ω|∂QT
≤ 0, x ∈ ∂Ω, t ∈ (0, T ) ,

ω|t=0 ≤ 0, x ∈ Ω ,

(33)

with the function c (x, t) from Lp (QT ) (p > n+ 2) and c (x, t) ≥ 1 in QT . Then
inequalities (33) and the Hölder condition A.5) with λ, 0 < λ < n+1

p , do not
imply inequality (32) for the function g in the general case.

6. Some applications

Choosing functions from different ”test” sets of functions as upper and lower
solutions, one can obtain various existence theorems for solutions of boundary
value problems of the form (1).

Let us consider as a ”test” set the functions of the form

u (x, t) = τ,

where τ is a real number.
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Theorem 3. Let conditions A.1)-A.4) be satisfied with some p > n + 2, φ ∈
W

2−1/p,1
p (∂QT ) and ψ ∈ W

2−p/2
p (Ω). Let the functions f, φ and ψ be such that

there are two numbers τ+ and τ−, τ+ ≥ τ− which satisfy
f (x, t, τ−, 0) ≤ 0 ≤ f (x, t, τ+, 0) , (x, t) ∈ QT ,

τ− ≤ φ (x, t) ≤ τ+, x ∈ ∂Ω, t ∈ (0, T ) ,

τ− ≤ ψ (x, t) ≤ τ+, x ∈ Ω.

Then there exists a solution ū (x, t) of the boundary value problem (1) inW 2,1
p (QT )

and

τ− ≤ ū (x, t) ≤ τ+, (x, t) ∈ Q̄T .

To prove this theorem, it suffices to apply Theorem 2 with u+ = τ+ and
u− = τ−.

Let us now take the functions of the form

u (x, t) = τ · |x|
2 + t

2

as a ”test” set, where τ is a real number.

Theorem 4. Let conditions A.1) -A.4) be satisfied with some p > n + 2, φ ∈
W

2−1/p,1
p (∂QT ) and ψ ∈ W

2−2/p
p (Ω). Let the functions f, φ and ψ be such that

there are two numbers τ+ and τ−, τ+ ≥ τ− which satisfy
f
(
x, t, τ+ · |x|2+t

2 , τ+ · x
)
≥ nτ+ − τ+

2 , (x, t) ∈ QT ,

f
(
x, t, τ− · |x|2+t

2 , τ− · x
)
≤ nτ− − τ−

2 , (x, t) ∈ QT ,

τ− · |x|2+t
2 ≤ φ (x, t) ≤ τ+ · |x|2+t

2 , (x, t) ∈ ∂QT ,

τ− · |x|2
2 ≤ ψ (x) ≤ τ+ · |x|2

2 , x ∈ Ω .

Then there exists a solution ū (x, t) of the boundary value problem (1) inW 2,1
p (QT )

and

τ− · |x|
2 + t

2
≤ ū (x, t) ≤ τ+ · |x|

2 + t

2
, (x, t) ∈ QT .

To prove this theorem, it suffices to apply Theorem 2 with u+ = τ+ · |x|2+t
2

and u− = τ− · |x|2+t
2 .
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Remark 2. Similarly, we obtain a theorem on the solvability of the boundary
value problem (1) if, as a ”test” set of functions, we take functions of the form

u (x, t) = τ · |x− x0|2 + |t− t0|
2

with corresponding τ−, τ+ ∈ R and x0 ∈ Rn, t0 ∈ R.

Let us now take the functions of the form

u (x, t) = u0 (x, t) + τ · ϑ0 (x, t)

as a ”test” set, where u0 (x, t) is a solution of the problem
∆u0 − ∂u0

∂t = 0, (x, t) ∈ QT ,

u0|∂QT
= φ (x, t) , x ∈ ∂Ω, t ∈ (0, T ) ,

u|t=0 = ψ (x) , x ∈ Ω

and ϑ0 (x, t) is some first eigenfunction of the boundary value problem
∆ϑ0 − ∂ϑ0

∂t + λ1ϑ0 = 0, (x, t) ∈ QT ,

ϑ0|∂QT
= 0, (x, t) ∈ ∂Ω× (0, T ) ,

ϑ0|t=0 = 0 , x ∈ Ω

with ϑ0 (x, t) > 0 in QT , τ is a real number, and λ1 is an eigenvalue.

Theorem 5. Let conditions A.1) -A.4) be satisfied with some p > n + 2, φ ∈
W

2−1/p,1
p (∂QT ) and ψ ∈ W

2−2/p
p (Ω). Let the functions f, φ and ψ be such that

there are two numbers τ+ and τ−, τ+ ≥ τ− which satisfy

f (x, t, u0 + τ+ϑ0, Du0 + τ+Dϑ0) + λ1τ
+ · ϑ0 ≥ 0, (x, t) ∈ QT ,

f (x, t, u0 + τ−ϑ0, Du0 + τ−Dϑ0) + λ1τ
− · ϑ0 ≤ 0, (x, t) ∈ QT .

Then there exists a solution ū (x, t) of the boundary value problem (1) from the
space W 2,1

p (QT ) and

u0 + τ− · ϑ0 ≤ ū (x, t) ≤ u0 + τ+ · ϑ0, (x, t) ∈ QT .

To prove this theorem, it suffices to apply Theorem 2 with u+ = u0 + τ+ · ϑ0
and u− = u0 + τ− · ϑ0.
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Remark 3. Using the change ϑ (x, t) → u (x, t), defined by the relation u =
S (x, t, ϑ (x, t)) with a smooth function S, we can reduce finding the upper u+ and
the lower u− solutions of the boundary value problem (1) to finding the upper
ϑ+ and the lower ϑ− solutions of another boundary value problem induced by the
function S.
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