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Asymptotic Solutions of MHD Boundary Layer
Equations Leading the Flow of Viscous Fluid Due
to a Stretching Surface
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Abstract. Asymptotic solutions of the boundary layer equations leading the flow of
viscous fluid caused by stretching surface; outcomes are based on the asymptotic inte-
gration of second order linear differential equations. Also proved that the asymptotic
formulae will exhibit non-oscillatory behaviour. These asymptotic solutions will always
be bounded in nature.
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1. Introduction

Flows with viscous property on a sheet with stretching has vital industrial
applications, for example, in metallurgical processes.

Also many applications are found in the field of engineering processes for
example polymer extrusion and continuous casting. In view of these applications
the works done by Anderson et al. [3] and Pop and Na [13] can be referred. As
far as industries are concerned the magneto hydrodynamic (MHD) flow problems
have become more popular in recent years.

The primary efforts to investigate MHD flow over a wall with stretching in
fluid with electricity is reported by Pavlov [12]. Following Pavlov [12] the work
in this regard are due to Chakrabarti and Gupta [5], Vajravelu [22], Takhar
et al. [20], Kumari et al.[10], Anderson et al. [8] Vajravelu and Rollins [23],
Anderson [1, 2], Watanabe and Pop [24], Lawrence and Rao [11], etc. Effect of
the transfer of mass for the MHD flow over a stretching permeable surface subject
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to suction/injection has slight acknowledgment so far [5, 22, 23]. These studies
are limited only to relative low values of mass transfer parameter, K (say) and the
extension of the problem to include large values of K remains almost incomplete.
This forms the subject matter of the present paper.

2. Basic equations

Let us consider the flow with electricity conducting incompressible fluid (with
electrical conductivity σ) over a penetrable wall overlapping with the plane y = 0,
the flow being restricted to y > 0. Two forces which are equal and opposite are
introduced along the X-axis so that the wall is stretched keeping the origin fixed,
and a uniform magnetic field B0 is imposed along the Y -axis. The basic boundary
layer equations for the stretching flow are

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ϑ

∂2u

∂y2
− σB2

0u

ρ
, (2)

where u is a velocity along X-axis, whereas v is the velocity component along Y -
axis, and ρ and ϑ are the density and kinematic viscosity of the fluid, respectively.
The boundary conditions to the problem are

u = αx, v = −V0 at y = 0; u → 0 at y → ∞, (3)

where α > 0, and V0 is the velocity of suction (V0 > 0) or injection (V0 < 0),
respectively.

Defining the variables

u = αxf ′(x), v = −(αϑ)
1
2 f(t) , t =

(α
ϑ

) 1
2
y (4)

and substituting them into equation (2), we get the following ordinary differential
equation:

f ′′′ + ff ′′ − f ′2 −Mf ′ = 0, (5)

subject to the boundary conditions

f(0) = S, f ′(0) = 1, f ′(∞) = 0, (6)

where the prime denotes differentiation w. r. t. t. Here M =
σB2

0
aρ is the magnetic

parameter and S =
V0

(aϑ)
1
2
is the suction (S > 0) or injection (K < 0) parameter.
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Aim in this work is to discover the asymptotic solutions of equations (1)-
(2) as the independent variable ‘t’ tends to infinity. The asymptotic formulae
will be calculated based on the asymptotic integration of second order linear
differential equations. It has also been shown that the asymptotic formulae will
be non oscillatory and will be bounded in nature. The study of the asymptotic
behaviours of boundary layer equations have been the subject of considerable
research and hence have been dealt with by authors like Hartman [7], Serrin
[14], Singh [15, 16], Singh and Singh [18], Singh and Kumar [17], Kumar and
Singh [9], Chinquing et el. [6], Singh and Verma [19], Tiryaki and Yaman [21],
etc.

3. Asymptotic integrations

The asymptotic nature of equations (5)-(6) can be studied with the help of
following lemmas of Brighi [4].

Lemma 1. Let f = f(t) be a solution of the equations (5)-(6). Then we have
f ′′′ ≥ −ff ′′ in such a way that if f < 0 at infinity, we deduce that there exists
t1 ≥ t0 such that necessarily f ′′ < 0 and f ′′′ > 0 on [t1, ∞). So, f is bounded.

Proof. If now f > 0 at infinity and unbounded, then f(t) → ∞ as t → ∞,
and there exists t1 ≥ t0 such that f ′′′ < 0 and f > 1 on [t1, ∞).

Therefore, f ′′′ (t) ≥ −f ′′ (t) for t ≥ t1, and by integrating between s ≥ t1 and
∞, we obtain −f ′′(s) ≥ f ′(s). Integrating next between t1 and t ≥ t1, we get
f ′(t1)−f ′(t) ≥ f(t)−f(t1) and a contradiction by passing to the limit as t → ∞.
◀

Lemma 2. f ′′(∞) = 0 ∀ M ∈ R+ and there exists a sequence {tn}∞0 such that
lim
n→∞

f ′′′(tn) = lim
n→∞

f(tn)f
′′(tn) = 0.

Proof. ∃ {xn}∞0 since f ′(∞) = 0 satisfying f ′′(xn) → 0 (here xn is such that
f ′′(xn) = f ′(n + 1) − f ′(n)). Now, multiplying equation (5) by f ′′ and then
integrating, we obtain

1

2
f ′′(t)2 − 1

2
f ′′(0)2 − M

2

{
f ′(t)2 − f ′(0)2

}
+

1

3
f ′(t)3 = −

∫ t

0
f(ξ)f ′′(ξ)dξ (7)

∀ t.

However, f remains positive or negative for large t, the function t →
∫ t
0 f(ξ)f

′′(ξ)dξ
has a limit as t → ∞ and we deduce from (7) that f ′′(∞) exists. Then f ′′(∞) = 0
holds. ◀
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From equations (5)

h′′ + fh′ − (M + f ′)h = 0, (8)

where

f ′ = h. (9)

To eliminate the middle term in (8), let us put

h = X exp

(
−
∫ t

0
f(s)ds

)
(10)

in (8), to get

X ′′ − qX = 0, (11)

where

q = M +
3

2
f ′ +

1

4
f2. (12)

Let us assume that λ = f(∞) > 0. Hence, from (12),

q ∼ 1

4
λ2 (as t → ∞) (13)

and it is easy to verify that the integrals∫ ∞
q′′(s)q(s)

−3
2 ds and

∫ ∞
q′(s)2q(s)

−3
2 ds

converge.

Therefore (see [14]), equation (11) has the fundamental system of solutions
{X1, X2} such that

X1(η) ∼ q(t)
−1
4 exp

(
−
∫ t
0

√
q(s)ds

)
X2(η) ∼ q(t)

−1
4 exp

(∫ t
0

√
q(s)ds

)
(t → ∞).

Then, in view of (13), we get

X1(t ) ∼ exp
(
−λ

2 t
)

X2(t) ∼ exp
(
λ
2 t
)

(t → ∞).
(14)

From (10),

h ∼ C1 exp
(
−λ

2 t
)

h ∼ C2 exp (o(t)) (t → ∞).
(15)
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Using (9), (14) in (15), we have

f ′(t) ∼ C1 exp (−λt) (t → ∞), (16)

f ′(t) ∼ C2 exp (ot) (t → ∞) (17)

for some C1 ∈ R+.
In addition, integrating (5) between t and ∞, we get

f ′′(t) + f(t)f ′(t) = −2

∫ ∞

t
f ′2ds−M [λ− f(t)],

which implies that

f ′′(t) ∼ −λC1 exp(−λt) (t → ∞). (18)

4. Conclusion

From the above discussions, it is obvious that the solution (16) will exhibit
asymptotic behaviour as t → ∞, where as (17) will not. Similarly, (18) will also
show asymptotic behaviour as t → ∞.

Also, the solution (18) will be concave at infinity. And the solutions (16), (18)
will show non-oscillating nature. This can be proved in the following manner:

we have

f(t) ∼ λ , f ′(t) ∼ −C1 exp(−λt), f ′′(t) ∼ C2 exp(−λt) (t → ∞),

where C1, C2 > 0.
From (5) we get

f ′′′ ∼ −C3 exp(−λt) as (t → ∞) ,

and easily, by induction, we see that for all k ≥ 1, there is a constant Ck > 0
such that

f (k)(t) ∼ (−1)k Ck exp(−λt) as (t → ∞) .

Therefore, f is non-oscillating.
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