Weighted Sobolev-Morrey Regularity of Solutions to Variational Inequalities
V.S. Guliyev, A. Serbetci, I. Ekincioglu

Abstract. We establish a global generalized weighted Sobolev-Morrey $W^{1}M^{p, \varphi}_{w}$-regularity for solutions to variational inequalities and obstacle problems for divergence form elliptic systems with measurable coefficients in bounded non-smooth domains.
KeyWords and Phrases: Elliptic obstacle problem; generalized weighted Morrey estimates; measurable coefficients; Reifenberg flat domain; small $BMO$.
2000 Mathematics Subject Classiffcations: 35J88, 35R05

References.

[1] B.T. Bilalov, T.M. Ahmadov, Y. Zeren, S.R. Sadigova, Solution in the small and interior Schauder-type estimate for the m-th order elliptic operator in Morrey-Sobolev spaces, Azerb. J. Math. 12(2), 2022, 190-219.
[2] S. Byun, Y. Cho, L. Wang, Calder´on-Zygmund theory for nonlinear elliptic problems with irregular obstacles, J. Funct. Anal. 263(10), 2012, 3117-3143.
[3] S. Byun, D.K. Palagachev, S. Ryu, Elliptic obstacle problems with measurable coefficients in non-smooth domains, Numer. Funct. Anal. Optim. 35(7-9), 2014, 893-910.
[4] S. Byun, D.K. Palagachev, S. Ryu, Weighted W1,p estimates for solutions of nonlinear parabolic equations over non-smooth domains, Bull. London Math. Soc. 45(4), 2013, 765-778.
[5] S. Byun, D.K. Palagachev, Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains, Calc. Var. Partial Differential Equations 49(1-2), 2014, 37-76.
[6] S. Byun, S. Ryu, Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 30(2), 2013, 291-313.
[7] S. Byun, S. Ryu, L. Wang, Gradient estimates for elliptic systems with measurable coefficients in nonsmooth domains, Manuscripta Math. 133, 2010, 225-245.
[8] L.A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4(4-5), 1998, 383-402.
[9] L. Caso, R. DAmbrosio, L. Softova, Generalized Morrey spaces over unbounded domains, Azerb. J. Math. 10 (1), 2020, 193-208.
[10] M. Chipot, D. Kinderlehrer, G. Vergara-Caffarelli, Smoothness of linear laminates, Arch. Ration. Mech. Anal. 96(1), 1986, 81-96.
[11] D. Cruz-Uribe, OFS, O.M. Guzman, H. Rafeiro, Weighted Riesz bounded variation spaces and the Nemytskii operator, Azerb. J. Math. 10(2), 2020, 125-139.
[12] I. Ekincioglu, S. Umarkhadzhiev, Oscillatory integrals with variable Calder´onZygmund kernel on generalized weighted Morrey spaces, Trans. Natl. Acad. Sci.
Azerb. Ser. Phys.-Tech. Math. Sci., 42(1), Mathematics, 2022, 99-110. [13] A. Eroglu, M.N. Omarova, Sh.A. Muradova, Elliptic equations with measurable coefficients in generalized weighted Morrey spaces, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 43(2), 2017, 197-213.
[14] L.C. Evans, Partial Differential Equations. 2nd ed., Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
[15] J. Frehse, On the regularity of the solution of a second order variational inequality, Boll. Unione Mat. Ital. 6(4), 1972, 312-315.
[16] A. Friedman, Variational Principles and Free-Boundary Problems. Wiley Interscience. New York, 1982.
[17] V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in Rn. (in Russian) Doctoral dissertation, Moscow, Mat. Inst. Steklov, p. 329, 1994.
[18] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J Inequal Appl. Art. ID 503948, 20 pp. 2009.
[19] V.S. Guliyev, Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J. 3(3), 2012, 33-61.
[20] V.S. Guliyev, L. Softova, Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients, J. Differential Equations, 959, 2015, 2368-2387.
[21] V.S. Guliyev, Calder´on-Zygmund operators with kernels of Dini’s type on generalized weighted variable exponent Morrey spaces, Positivity 25(5), 2021, 1771-1788
[22] A.F. Ismayilova, Calder´on-Zygmund operators with kernels of Dini’s type and their multilinear commutators on generalized Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 41(4), Mathematics, 2021, 100-111.
[23] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Reprint of the 1980 original. Classics in Applied Mathematics, 31. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2000.
[24] Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282(2), 2009, 219-231.
[25] N.V. Krylov, Second-order elliptic equations with variably partially VMO coefficients, J. Funct. Anal. 257(6), 2009, 1695-1712.
[26] Y. Li, L. Nirenberg, Estimates for elliptic systems from composite material, Comm. Pure Appl. Math. 56(7), 2003, 892-925.
[27] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings. Springer - Verlag, Tokyo, 1991, 183-189.

[28] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43, 1938, 126-166. [29] M.K.V. Murthy, G. Stampacchia, A variational inequality with mixed boundary conditions. Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972). Israel J. Math. 13, 1972, 188-224.
[30] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces, Math. Nachr. 166, 1994, 95-103.
[31] S. Nakamura, Generalized weighted Morrey spaces and classical operators, Math. Nachr. 289(17-18), 2016, 2235-2262.
[32] D.K. Palagachev, L.G. Softova, Quasilinear divergence form parabolic equations in Reifenberg flat domains, Discrete Contin. Dyn. Syst. A 31(4), 2011, 1397-1410.
[33] D.K. Palagachev, L.G. Softova, The Calderon-Zygmund property for quasilinear divergence form equations over Reifenberg flat domains, Nonlinear Anal. 74(5), 2011, 1721-1730.
[34] E. Reifenberg, Solutions of the plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104, 1960, 1-92.
[35] J. Rodrigues, Obstacle Problems in Mathematical Physics. North Holland, Amsterdam, 1987.
[36] A. Torchinsky, Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics, vol. 123, Academic Press, Orlando, FL, 1986.
[37] Y. Sawano, A thought on generalized Morrey spaces, J. Indonesian Math. Soc. 25(3), 2019, 210-281.
[38] T. Toro, Doubling and flatness: Geometry of measures, Notices Amer. Math. Soc. 44(9), 1997, 1087-1094.
[39] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, 1736. Springer-Verlag, Berlin, 2000.