A General Result on (ϕ, δ)-Monotone Sequences

H.S. Özarslan*, M.Ö. Şakar

Abstract

In this paper, a theorem dealing with the $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series has been generalized to $\left|A, p_{n}, \beta ; \gamma\right|_{k}$ summability method by using (ϕ, δ) monotone sequences. This new theorem also includes some new results.

Key Words and Phrases: absolute matrix summability, infinite series, summability factors, (ϕ, δ) monotone sequences, Hölder's inequality, Minkowski's inequality.
2010 Mathematics Subject Classifications: 26D15, 40A05, 40C05, 40D15, 40G99

1. Introduction

A sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n, where $\Delta^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. A sequence $\left(\mu_{n}\right)$ is said to be (ϕ, δ)-monotone if and only if $\mu_{n} \geq 0, \mu_{n} \rightarrow 0$ ultimately and $\Delta \mu_{n} \geq-\delta_{n+1}$, where $\left(\delta_{n}\right)$ is a sequence of non-negative numbers, $\left(\phi_{n}\right)$ is a positive monotone increasing sequence and $\sum \phi_{n} \delta_{n}<\infty$ (see [15]). Let $\sum a_{n}$ be an infinite series with partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-m}=p_{-m}=0, m \geq 1\right)
$$

The sequence-to-sequence transformation

$$
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [2]). The series $\sum a_{n}$ is said to be summable
*Corresponding author.
http://www.azjm.org
(c) 2010 AZJM All rights reserved.

$$
\begin{aligned}
& \left|\bar{N}, p_{n}\right|_{k}, k \geq 1 \text {, if (see [1]) } \\
& \qquad \sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty .
\end{aligned}
$$

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e. a lower triangular matrix of non-zero diagonal entries. The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}, \beta ; \gamma\right|_{k},(k \geq 1$, $\gamma \geq 0$ and β is a real number), if (see [10])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty,
$$

where

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots
$$

If we take $\beta=1$, then $\left|A, p_{n}, \beta ; \gamma\right|_{k}$ summability reduces to $\left|A, p_{n} ; \gamma\right|_{k}$ summability method (see [5]). If we take $\beta=1$ and $\gamma=0$, then $\left|A, p_{n}, \beta ; \gamma\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability method (see [16]).

2. Known Result

In [13], the following theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series has been proved.

Theorem 1. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \quad \text { as } \quad n \rightarrow \infty . \tag{1}
\end{equation*}
$$

Suppose that there exists a sequence of numbers $\left(\mu_{n}\right)$, which is (ϕ, δ) monotone with $\sum \mu_{n} \Delta \phi_{n}$ is convergent. If the conditions

$$
\begin{equation*}
\sum_{n=1}^{m} n\left|\Delta^{2} \mu_{n}\right| \phi_{n}=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(\phi_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{3}
\end{equation*}
$$

where $t_{n}=\frac{1}{n+1} \sum_{v=0}^{n} v a_{v}$, are satisfied, then the series $\sum a_{n} \mu_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

If we take $\mu_{n}=\frac{2^{(-1)^{n}}}{n^{4}}$ and $\phi_{n}=\log n$, the conditions of Theorem 1 are satisfied. But the sequence (μ_{n}) does not satisfy the conditions of the theorem of Mazhar [4] on $|C, 1|_{k}$ summability.

Lemma 1. [13] Under the conditions of Theorem 1, we get

$$
\begin{equation*}
n \phi_{n}\left|\Delta \mu_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty . \tag{4}
\end{equation*}
$$

Lemma 2. [15] If the sequence $\left(\mu_{n}\right)$ is (ϕ, δ) monotone and $\sum \mu_{n} \Delta \phi_{n}$ converges, then

$$
\begin{gather*}
\mu_{n} \phi_{n}=o(1) \quad \text { as } \quad n \rightarrow \infty, \tag{5}\\
\sum_{n=1}^{\infty} \phi_{n+1}\left|\Delta \mu_{n}\right|<\infty . \tag{6}
\end{gather*}
$$

3. Main Result

There are many papers on absolute matrix summability (see $[3,6,7,8,9,11$, 12]). The aim of this paper is to generalize Theorem 1 to $\left|A, p_{n}, \beta ; \gamma\right|_{k}$ summability. Before stating the main theorem, we must first introduce some further notations. Given a normal matrix $A=\left(a_{n v}\right)$, two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ are given as follows:

$$
\begin{equation*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{8}
\end{equation*}
$$

Note that \bar{A} and \hat{A} are well-known matrices of series-to-sequence and series-toseries transformations, respectively. Then, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{10}
\end{equation*}
$$

Now let us prove the following theorem.

Theorem 2. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{align*}
& \bar{a}_{n 0}=1, \quad n=0,1, \ldots, \tag{11}\\
& a_{n-1, v} \geq a_{n v} \text { for } n \geq v+1, \tag{12}\\
& a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{13}\\
&\left|\hat{a}_{n, v+1}\right|= O\left(v\left|\Delta_{v} \hat{a}_{n v}\right|\right), \tag{14}\\
& \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\gamma k+k-1)-k}\right) \text { as } m \rightarrow \infty, \tag{15}
\end{align*}
$$

where $\Delta_{v}\left(\hat{a}_{n v}\right)=\hat{a}_{n v}-\hat{a}_{n, v+1}$. If all conditions of Theorem 1 are satisfied with the condition (3) replaced by

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k}\left|t_{n}\right|^{k}=O\left(\phi_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{16}
\end{equation*}
$$

then the series $\sum a_{n} \mu_{n}$ is summable $\left|A, p_{n}, \beta ; \gamma\right|_{k}, k \geq 1, \gamma \geq 0$ and $-\beta(\gamma k+k-1)+k>0$.

Proof. Let $\left(\Theta_{n}\right)$ denote A-transform of the series $\sum a_{n} \mu_{n}$. Then, by (7) and (8), we have

$$
\bar{\Delta} \Theta_{n}=\sum_{v=1}^{n} \frac{\hat{a}_{n v} \mu_{v}}{v} v a_{v} .
$$

By Abel's transformation, we get

$$
\begin{aligned}
\bar{\Delta} \Theta_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \mu_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \mu_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
& =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \mu_{v}}{v}\right)(v+1) t_{v}+\frac{\hat{a}_{n n} \mu_{n}}{n}(n+1) t_{n} \\
& =\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \mu_{v} t_{v}+\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \mu_{v} t_{v} \\
& +\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \mu_{v+1} \frac{t_{v}}{v}+\frac{n+1}{n} a_{n n} \mu_{n} t_{n} \\
& =\Theta_{n, 1}+\Theta_{n, 2}+\Theta_{n, 3}+\Theta_{n, 4} .
\end{aligned}
$$

To prove Theorem 2, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left|\Theta_{n, r}\right|^{k}<\infty \quad \text { for } \quad r=1,2,3,4
$$

First, using Hölder's inequality, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left|\Theta_{n, 1}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right) \| \mu_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\mu_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k+1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\mu_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\mu_{v}\right|\left|\mu_{v}\right|^{k-1}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\gamma k+k-1)-k}\left|\mu_{v} \| t_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\mu_{v}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\beta(\gamma k+k-1)-k}\left|t_{r}\right|^{k} \\
& +O(1)\left|\mu_{m}\right| \sum_{r=1}^{m}\left(\frac{P_{r}}{p_{r}}\right)^{\beta(\gamma k+k-1)-k}\left|t_{r}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \mu_{v}\right| \phi_{v+1}+O(1)\left|\mu_{m}\right| \phi_{m} \\
& =O(1) \text { as } m \rightarrow \infty \text {, }
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2 and Lemma 2.

Now, since $v\left|\Delta \mu_{v}\right|=O\left(1 / \phi_{v}\right)=O(1)$, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left|\Theta_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1} \| \Delta \mu_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\Delta \mu_{v}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\left\|\Delta \mu_{v}\right\| t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\Delta \mu_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\Delta \mu_{v}\right|\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k+1}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\left\|\Delta \mu_{v}\right\| t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \mu_{v}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \mu_{v}\right|\left|t_{v}\right|^{k}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\gamma k+k-1)-k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \mu_{v}\right|\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\beta(\gamma k+k-1)-k}\left|t_{r}\right|^{k} \\
& +O(1) m\left|\Delta \mu_{m}\right| \sum_{r=1}^{m}\left(\frac{P_{r}}{p_{r}}\right)^{\beta(\gamma k+k-1)-k}\left|t_{r}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \mu_{v}\right| \phi_{v}+\sum_{v=1}^{m-1}\left|\Delta \mu_{v+1}\right| \phi_{v+1}+O(1) m\left|\Delta \mu_{m}\right| \phi_{m} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty \text {, }
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2, Lemma 1 and Lemma 2.

Again using Hölder's inequality and by (14), we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left|\Theta_{n, 3}\right|^{k} & \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\mu_{v+1}\right| \frac{\left|t_{v}\right|}{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\mu_{v+1}\right|\left|t_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\mu_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k+1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\mu_{v+1}\right|\left|t_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\mu_{v+1}\right|\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\gamma k+k-1)-k}\left|\mu_{v+1}\right|\left|t_{v}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

as in $\Theta_{n, 1}$.
Finally, we get

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left|\Theta_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)} a_{n n}^{k}\left|\mu_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)-k}\left|\mu_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \text { as } \quad m \rightarrow \infty,
\end{aligned}
$$

as in $\Theta_{n, 1}$.
Therefore, we obtain

$$
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\gamma k+k-1)}\left|\Theta_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2,3,4 .
$$

This completes the proof of theorem.

4. Conclusion

If we take $\beta=1, \gamma=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get Theorem 1. If we take $\beta=1$, then we get a known result on $\left|A, p_{n} ; \gamma\right|_{k}$ summability method (see [14]). Also, if we take $\beta=1$ and $\gamma=0$, then we get a new theorem involving $\left|A, p_{n}\right|_{k}$ summability. Moreover, if we take $\beta=1, \gamma=0, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n, then we get a theorem of Mazhar [4] on $|C, 1|_{k}$ summability.

Acknowledgement

This work was supported by Research Fund of the Erciyes University, Project Number: FDK-2021-8831.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97(1), 1985, 147-149.
[2] G.H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
[3] B. Kartal, On an extension of absolute summability, Konuralp J. Math., 7(2), 2019, 433-437.
[4] S.M. Mazhar, On $|C, 1|_{k}$ summability factors of infinite series, Acta Sci. Math. (Szeged), 27, 1966, 67-70.
[5] H.S. Özarslan, H.N. Öğdük, Generalizations of two theorems on absolute summability methods, Aust. J. Math. Anal. Appl., Art. 13, 1(2), 2004, 7 pp.
[6] H.S. Özarslan, A new application of generalized almost increasing sequences, Bull. Math. Anal. Appl., 8(2), 2016, 9-15.
[7] H.S. Özarslan, A new study on generalized absolute matrix summability, Commun. Math. Appl., 7(4), 2016, 303-309.
[8] H.S. Özarslan, A new factor theorem for absolute matrix summability, Quaest. Math., 42(6), 2019, 803-809.
[9] H.S. Özarslan, An application of absolute matrix summability using almost increasing and δ-quasi-monotone sequences, Kyungpook Math. J., 59(2), 2019, 233-240.
[10] H.S. Özarslan, A. Karakaş, A new study on absolute summability factors of infinite series, Maejo Int. J. Sci. Technol., 13, 2019, 257-265.
[11] H.S. Özarslan, A. Karakas, On generalized absolute matrix summability of infinite series, Commun. Math. Appl., 10(3), 2019, 439-446.
[12] H.S. Özarslan, Generalized almost increasing sequences, Lobachevskii J. Math., 42(1), 2021, 167-172.
[13] H.S. Özarslan, M.Ö. Şakar, A new application of (ϕ, δ)-monotone sequences, Russ. Math., (66)3, 2022, 30-34.
[14] H.S. Özarslan, M.Ö. Şakar, On absolute matrix summability involving (ϕ, δ) monotone sequences, Conference Proceeding Science and Technology, 5(1), 2022, 9-13.
[15] M.M. Robertson, A generalization of quasi-monotone sequences, Proceedings of the Edinburgh Mathematical Soc., (2)16, 1968, 37-41.
[16] W.T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series (IV), Indian J. Pure Appl. Math., 34(11), 2003, 15471557.

Hikmet Seyhan Özarslan
Department of Mathematics
Erciyes University
38039 Kayseri, Turkey
E-mail: seyhan@erciyes.edu.tr
Mehmet Öner Şakar
Department of Mathematics
Erciyes University
38039 Kayseri, Turkey
E-mail: mehmetoner1988@hotmail.com
Received 01 January 2023
Accepted 02 August 2023

