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On Solvability of a Mixed Problem for a Class of
Equations That Change Type
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Abstract. In [6, 7], it was shown that mixed problems can be both ill-posed for Petro-
vsky well-conditioned equations and well-posed for ill-conditioned equations. In the
present paper we study the existence and uniqueness of the solution of a mixed problem
for a class of equations with complex-valued coefficients that behave as parabolic ones,
despite the fact that they can change over ”time” from parabolic type to Schrödinger
type, or even to antiparabolic type.
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1. Introduction and problem statement

Unique solvability and well-posedness of linear mixed problems for Petrovsky
parabolic equations and systems were considered by many authors [1, 10, 11,
12, 13, 14], etc. Depending on their statement, such problems can be solved by
the methods of Fourier separation of variables, Laplace transform, heat poten-
tial, freezing of coefficients, a priori estimates, contour integral, residue, finite-
difference, etc. It is known that the Fourier method is ineffective for mixed
problems generating non-self-adjoint spectral problem, and there arise more dif-
ficulties when the latter has multiple eigenvalues; The thermal potential method
is inapplicable when boundary conditions contain a higher order time derivative.
The Laplace transform method does not work when the corresponding spectral
problem is almost regular and its eigenvalues have increasing real parts. The
residue method and the contour integral method developed by M.L. Rasulov be-
came effective also for the problems with the above properties [1, 8]. In this
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paper, these two methods are applied to study the solvability of one-dimensional
mixed problem with new, previously unexplored features. It is known that the
equation of the form

∂U

∂t
= a (t, x)

∂2U

∂x2
(1)

is called Petrovsky parabolic (uniformly parabolic) equation in some domain Q,
if Re a (t, x) > 0 (Rea (t, x) ≥ δ > 0), for all (t, x) ∈ Q.

Mixed problems for the equations of the form (1) were studied only subject
to their parabolicity [15, 16, 17] or when they are Schrödinger [12, 18, 19], i.e.
when

Rea (t, x) = 0. (2)

At the same time, it is known that [19] if the equation (1) is anti-parabolic (i.e.
if Rea (t, x) < 0, for (t, x) ∈ Q), then, with the right hand sides of initial-
boundary conditions having only finite smoothness, the mixed problem for it is
not well-posed.

Definition 1. Considering equation (1) in some domain QT = {(t, x) : 0 < t < T
≤ ∞, 0 < x < 1}, we call it generalized parabolic in this domain if
Re
∫ t
0 a (τ, x) dτ > 0 for all (t, x) ∈ QT .

Note that an equation that is parabolic in the domain QT is generalized
parabolic as well. However, not every generalized parabolic equation is parabolic:
a generalized parabolic equation, being parabolic to a certain moment of time
t0 > 0, can become Schrödinger or even anti-parabolic type. In [6, 7], it is
shown that mixed problems can be both ill-posed for Petrovsky well-conditioned
equations and well-posed for ill-conditioned equations.

2. Problem solution

We study the solvability of the mixed problem

M

(
t,

∂

∂t

)
U = L

(
x,

∂

∂x

)
U, 0 < t < T, 0 < x < 1, (3)

U(0, x) = φ(x), (4)

U(t, 0) = U(t, 1) = 0, (5)

where M
(
t, ∂

∂t

)
= 1

P (t)
∂
∂t , L

(
x, ∂

∂x

)
= 1

(x+b)2
· ∂2

∂x2 , b = b1 + ib2, P (t) = p1 (t) +

ip2 (t) are complex-valued functions, pj (t) ∈ C[0, 1] (j = 1, 2) , P1 (t) ̸= 0 , φ (x)
is a given function, and U (x) is a sought-for function.
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It is known that [14] equation (1) is said to be Petrovsky parabolic in the
domain D = {(t, x) : 0 ≤ t ≤ T, 0 ≤ x ≤ 1} of the space (t, x) if for any point
(t, x) ∈ D the real part of the root γ of the characteristic equation

1

P (t)
γ − 1

(x+ b)2
σ2 = 0

satisfies the inequality

Reγ (t, x, σ) < 0

for any real σ ̸= 0.

The final solvability conditions will be

10.
∫ t
0 p1 (τ) dτ > 0, b1 > 0 , b2 > 0, ;

20. Reb2+ω (T ) Imb2 > 0, if Im
[
p ·
∫ t
0 p (τ) dτ

]
≥ 0 and Reb2+ω (T ) Imb2 <

0 if Im
[
p ·
∫ t
0 p (τ) dτ

]
< 0, where ω (t) =

∫ t
0 p2 (τ) dτ ·

( ∫ t
0 p1 (τ) dτ

)−1

30. φ(x) ∈ C2[0, 1], φ(0) = φ(1) = 0.

It is easy to see that even if the inequalities p1 (t) > 0, b1 > 0 , b2 > 0 are
fulfilled, the equation (3) is a Petrovsky equation only when

Im
[
p ·
(
p′ (t)

)]
≤ 0, Reb2 + r (T ) Imb2 > 0 (6)

or

Im
[
p ·
(
p′ (t)

)]
> 0, Reb2 + r (0) Imb2 > 0, (7)

where r (t) = p2 (t) (p1 (t))
−1.

Note that, for example, for the equation

(x+ 1 + i)2
∂u

∂t
=

(
2 (α1 − i) t+ β1 +

3T

2
i

)
∂2u

∂x2
, α1 > 0, β1 > 0

the conditions 10 , 20 are fulfilled, but due to the violation of the second of the
inequalities (6) it is not Petrovsky parabolic in [0, T ] × [0, 1]. It is easy to see
that this equation is not even Shilov parabolic. Furthermore, in a part of the
considered rectangle it is anti-parabolic (for example, for α1 = β1 = T = 1 in

the domain 1
2

(
2− x2

)−1 (
x2 + 5x+ 3

)
< t ≤ 1, 0 ≤ x ≤

√
37−5
6 (see the shaded

area in Figure 1).

The spectral problem corresponding to (3)-(5) has the following form:

y′′ − λ2 (x+ b)2 y = −φ (x) (x+ b)2 , (8)

y (0) = y (1) = 0 (9)
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Figure 1:

Also note [1, 2] that the arguments of the roots ± (x+ b) of the Birkhoff
characteristic equation are not constant in [0, 1].

The Green function G (x, ξ, λ) of the problem (8),(9) is analytic everywhere
on the complex λ plane except for a countable set of values λ = λk (k = 0,±1,
±2, ...), that are its poles and for which the following asymptotic representation
[3] is valid:

λk =
πk

√
−1

1 + 2b
+O

(
1

k

)
, (|k| → ∞) . (10)

Let

Si =
{
λ\ Re (λb) ·Re (λ (1 + b)) ≤ 0, (−1)iReλ > 0

}
; (i = 1, 2)

Si =
{
λ\ Re (λb) < 0, (−1)iRe (λ (1 + b)) ≤ 0

}
; (i = 3, 4)

χ (λ) = − (Reλ)−1 ·Reλb, (λ ∈ Si, i = 1, 2) .

Obviously, 0 ≤ χ (λ) ≤ 1, for λ ∈ Si, (i = 1, 2).
It is seen from the asymptotic representation (10) that distinct poles λk lie

in the sectors λ ∈ Si, (i = 1, 2). Only finitely many of them can get in λ ∈
Si, (i = 3, 4).

The following estimates for the derivatives of the Green function were obtained
in [4, 5]: ∣∣∣∣∂kG (x, ξ, λ)

∂xk

∣∣∣∣ ≤ c |λ|k−1 , k = 0, 1, 2; λ ∈ S3

⋃
S4, |λ| > R, (∗)∣∣∣∣∂kG (x, ξ, λ)

∂xk

∣∣∣∣ ≤ ce(−1)iχ2
0(λ)Reλ, k = 0, 1, 2; λ ∈ Si, |λ| > R, (i = 1, 2) ,

that are valid outside δ vicinities of poles, where R is a sufficiently large, and δ
is a sufficiently small positive number with χ0 (λ) = min (χ (λ) ; 1− χ (λ)).

The following theorem is valid:
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Theorem 1. Let the conditions 10, 20, 30 be fulfilled. Then the problem (3)-
(5) has a classic solution U (t, x) ∈ C1,2 ((0;T ]× [0; 1])

⋂
C ([0;T ]× [0; 1]) repre-

sentable by the following formula for t > 0 :

U (t, x) =
1

πi

∫
λeλ

2
∫ t
0 P (τ)dτ · y (x, λ) dλ, (∗∗)

where

Γ =
3⋃

j=1

Γj ,

Γj = {λ : λ = r (1 + pj) , r ≥ R} (j = 1, 2) ,

Γ3 = {λ : λ = R (1 + iη) , p1 ≤ η ≤ p2} ,

y (x, λ) =

∫ 1

0
G (x, ξ, λ) (ξ + b)2 φ (ξ) dξ,

pj = Kj (tj) + (−1)j δ, Kj (tj) = −ω (t) + (−1)j
√
ω2 (t) + 1, (j = 1, 2) , (11)

t1 = 0, t2 = T if Im
[
p ·
∫ t
0 p (τ) dτ

]
≥ 0 and t1 = T, t2 = 0 if Im

[
p ·
∫ t
0 p (τ) dτ

]
<

0, R is a sufficiently large, and δ is a sufficiently small positive number.

At first we prove some lemmas:

Figure 2:

Lemma 1. Let
∫ t
0 p1 (τ) dτ > 0. Then for t ∈ [t0, T ] (for ∀ t0 ∈ (0, T )), on the

rays λ = r (1 + ipj) (r ≥ 0, j = 1, 2) the estimate of the following form is valid:

Re

(
λ2

∫ t

0
p (τ) dτ

)
≤ −ε |λ|2 , (12)

where ε > 0.
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Proof. First of all, note that there exists a number δ1 > 0 such that for
t ∈ [t0, T ] ∫ t

0
p1 (τ) dτ > δ1. (13)

From the obvious equality

Re

(
λ2

∫ t

0
p (τ) dτ

)
= −

∫ t

0
p1 (τ) dτ [(λ2 −K1 (t)λ1) (λ2 −K2 (t)λ1)] =

= −
∫ t

0
p1 (τ) dτ

2∏
m=1

[Imλ−Km (t)Reλ] (14)

for λ = r (1 + ipj) (r ≥ 0, j = 1, 2) , we obtain

Re

(
λ2

∫ t

0
p (τ) dτ

)
= −r2

∫ t

0
p1 (τ) dτ [pj −Km (t)] =

= −r2
∫ t

0
p1 (τ) dτ

2∏
m=1

[
Kj (tj) + (−1)j δ −Km (t)

]
. (15)

But from the representations of the functions Km (t) (see (11), it follows that

if Im
[
p ·
∫ t
0 p (τ) dτ

]
> 0, then K ′

m (t) > 0, consequently, Km (0) ≤ Km (t) ≤
Km (T ) ). Then

K1 (t1)−δ−Km (t) = K1 (0)−δ−Km (t) ≤ K1 (0)−δ−Km (0) ≤ −δ, (m = 1, 2)

K2 (t2)+δ−Km (t) = K1 (T )+δ−Km (t) ≥ K2 (T )+δ−Km (T ) ≥ δ. (m = 1, 2)
(16)

By (13), (16), from (15) we have:

Re

(
λ2

∫ t

0
p (τ) dτ

)
≤ −δ1δ

2r2 ≤ − δ1δ
2

max
j

√
1 + p2j

· |λ|2 . (17)

But if Im
[
p ·
∫ t
0 p (τ) dτ

]
≤ 0, thenK ′

m (t) ≤ 0, consequentlyKm (T ) ≤ Km (t) ≤
Km (0) ). Then

K1 (t1)−δ−Km (t) = K1 (T )−δ−Km (t) ≤ K1 (T )−δ−Km (T ) ≤ −δ, (m = 1, 2)

K2 (t2) + δ −Km (t) ≥ K2 (0) + δ −Km (0) ≥ δ, (m = 1, 2) . (18)

From (13),(15), (18) we also obtain the estimate of the form (17). The lemma is
proved. ◀



192 Yu.A. Mamedov, V.Yu. Mastaliyev

Lemma 2. Let
∫ t
0 p1 (τ) dτ > 0. Then for t ∈ [t0, T ] (for ∀ t0 ∈ (0, T )) and all

λ from the sectors∑
1 = {λ : arg (1 + ip2) ≤ arg λ ≤ π + arg (1 + ip1)} ,∑
2 = {λ : arg (1 + ip2)− π ≤ arg λ ≤ arg (1 + ip1)}.

the estimate of the form (12) is valid.

Proof. Denote ρ = |λ|, θ = arg λ, θj = arg(1 + ipj). Then

Re

(
λ2

∫ t

0
p (τ) dτ

)
= ρ2w(θ, t),

where w(θ, t) = Ree2iθ
(∫ t

0 p (τ) dτ
)

and, according to Lemma 1, these exists

ε > 0 such that
w(θj , t) ≤ −ε (j = 1, 2),

for t ∈ [t0, T ], (t0 ∈ (0, T )). Obviously

w(θ1 + π, t) = w(θ1, t) ≤ −ε ,

w(θ2 − π, t) = w(θ2, t) ≤ −ε,

and therefore we should prove non-existence of the zeros of the function w(θ, t)
inside the segments [θ2, θ1+π] and [θ2−π, θ1]. But since this function is negative
at the ends of these segments, it can have either multiple zero or at least two
different zeros inside each of them.

If

w(θ0, t) =
dw(θ0, t)

dθ0
= 0,

for θ0 ∈ (θ2, θ1 + π) (or for θ0 ∈ (θ2 − π, θ1) ), then we have

Ree2iθ
(∫ t

0
p (τ) dτ

)
= 0, Re2ie2iθ0

(∫ t

0
p (τ) dτ

)
=

= −2Ime2iθ0
(∫ t

0
p (τ) dτ

)
= 0.

Consequently, e2iθ0
(∫ t

0 p (τ) dτ
)
= 0, which is impossible by virtue of the condi-

tion
∫ t
0 p1 (τ) dτ > 0.

Let us consider the second case. Let

w(θ′0, t) = w(θ′′0 , t) = 0, (θ′0 < θ′′0),
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where θ′0, θ
′′
0 ∈ (θ2, θ1 + π) (or θ′0, θ

′′
0 ∈ (θ2 − π, θ1)). It is easy to see that the

function w(θ, t) is the solution of the differential equation

d2w

dθ2
+ 4w = 0

and, consequently, the distance between two neighboring zeros of any solution of
this equation equals π

2 . Then it is clear that

π

2
≤ θ′′0 − θ′0 < π + θ1 − θ2,

whence we have
θ2 − θ1 <

π

2
. (19)

On the other hand, θ2−θ1 is an angle between the vectors {1, p1} and {1, p2},
whose scalar product equals

f(δ) = 1 + p1p2 = 1 + [K1(t1)− δ] [K2(t2) + δ].

The function f(δ) is a decreasing function:

f ′(δ) = −2δ +K1(t1)−K2(t2) < 0.

Therefore, we have

f(δ) < f(0) = 1 +K1(t1)K2(t2) =

=

 1 +K1(0)K2(T ), if , Im
[
p ·
∫ t
0 p (τ) dτ

]
> 0,

1 +K1(T )K2(0), if Im
[
p ·
∫ t
0 p (τ) dτ

]
≤ 0,

(20)

for δ > 0. As the functions Kj (t) are increasing for Imαβ > 0, and non-

increasing for Im
[
p ·
∫ t
0 p (τ) dτ

]
≤ 0, and furthermore K1(0)K2(0) = −1, from

(17) we obtain:
f(δ) < f(0) ≤ 1 +K1(0)K2(0) = 0.

Negativeness of the scalar product f(δ) means that the angle θ2 − θ1 (for
δ > 0) is an obtuse angle that contradicts inequality (19).

The lemma is proved. ◀

Lemma 3. Let conditions 10,20 be fulfilled. Then the numbers δ and R (in the
definition of the contour Γ) can be chosen so that

Γ ∩ Sj = ∅ (j = 1, 2) (21)
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and the domain

Rδ = {λ : λ = r(1 + iη), r ≥ R, p1 ≤ η ≤ p2} (22)

does not contain the poles λk of the Green function G(x, ξ, λ).

Proof. From the definition of domains Sj (j = 1, 2) it is seen that to prove
(21) we should study the sign of the function

J(λ) = ReλbReλ(1 + b) (23)

for λ ∈ Γ. Assuming in (23) λ = r (1 + ipj) (r ≥ R), we obtain:

Ij (δ) = J [r(1 + ipj)] = r2(b1 − b2pj)(1 + b1 − b2pj) =

= r2

[(
b1 − b2pj +

1

2

)2

− 1

4

]
. (24)

It is seen from (23), (24) that

Ij (0) = r2

[(
b1 − b2Kj(tj) +

1

2

)2

− 1

4

]

Therefore, if

b1 − b2Kj(tj) /∈ [−1, 0],

then Ij (0) > 0. But then one can find δ0 > 0 such that for δ ∈ (0, δ0) there
will be Ij (δ) > 0, which can not be true for the points in the sectors S1 and S2.
Therefore, assume that

−1 ≤ b1 − b2Kj(tj) ≤ 0.

From condition 10 and definition of the function K1(t) it follows that this in-
equality is impossible for j = 1. Consequently, let

−1 ≤ b1 − b2K2(t2) ≤ 0,

whence we have:

b1 − b2ω(t2) ≤ b2
√

ω2(t2) + 1 ≤ b1 + 1− b2ω(t2). (25)

Let us consider two possible cases:

1) b1 − b2ω(t2) ≥ 0;

2) b1 − b2ω(t2) < 0.
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In the first case, from (25) we obtain

Reb2 − ω(t2)Imb2 ≤ 0.

In the second case we have ω(t2) >
b1
b2
, consequently

Reb2 − ω(t2)Imb2 < Reb2 − 2b21 = − |b|2 < 0.

Both of these inequalities are impossible due to the conditions 10,20 and defini-
tions of the function ω(t) and the number t2.

We now assume in (23) λ = R (1 + iη) (p1 ≤ η ≤ p2) :

I (η) = J [R(1 + iη)] = R2(b1 − b2η)(b1 + 1− b2η) = R2

[(
b1 − b2η +

1

2

)2

− 1

4

]
.

For η = pj , we have established above that there exists δ > 0 such that I (pj) >
0 (j = 1, 2). Therefore, it suffices to consider only the stationary point

η0 =
1

b2

(
b1 +

1

2

)
.

But since for the function

g(δ) =
1

b2

(
b1 +

1

2

)
− p2

we have

g(0) =
1

b2

(
b1 +

1

2

)
−K2(t2) >

1

b2
(b1 − b2K2(t2)) =

=
1

b2

(
b1 − b2ω(t2)− b 2

√
ω2(t2) + 1

)
=

=
Reb2 − ω(t2)Imb2

b2[b1 − b2ω(t2) + b 2

√
ω2(t2) + 1]

> 0,

we can choose δ0 > 0 such that g(δ) > 0 for δ ∈ (0, δ0). This means that the
stationary point η0 lies outside the segment [p1, p2], and I(η) > 0 for η ∈ [p1, p2].
Thus, the first statement of the lemma is proved. From this statement we have
the inclusion

Rδ ⊂
(
S3

⋃
S4

)
, (26)

whence, due to the fact that the sectors S3 and S4 can contain only finitely many
poles λk, it follows that for sufficiently large R > 0 the following relation is valid:

{λk}
⋂

Rδ = ∅.
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The lemma is proved. ◀

Finally, considering that R, δ (in the definition of the contour Γ ) were chosen
to meet the requirements of Lemma 3, let us prove the theorem using Lemmas
1-3.

Denote Γ− =
3⋃

j=1
Γ−
j , where

Γ−
j = {λ : λ = −r (1 + pj) , r ≥ R} (j = 1, 2)

Γ−
3 = {λ : λ = −R (1 + iη) , p1 ≤ η ≤ p2} .

Let us agree to consider the directions Γ1 → Γ3 → Γ2 and Γ−
1 → Γ−

3 → Γ−
2

positive on Γ and Γ−. Let us choose a number n0 such that

n0 >
2πR

|1 + 2b|

√
1 + max

j
p2j

and denote by {rn} the sequence of numbers

rn =
(4n+ 4n0 + 1)π

2 |1 + 2b|
(n = 0, 1, ...). (27)

Due to the choice of number n0, the circles

On =
{
λ : λ = rne

iθ , (0 ≤ θ ≤ 2π)
}

intersect Γ and Γ− only at the points lying on Γ±
j (j = 1, 2), and, moreover,

a±jn = Γ±
j

⋂
On = ± rn√

1 + p2j

(1 + ipj) = ±rne
iθj .

Furthermore, from (27) we see that for sufficiently large R > 0∣∣∣rneiθ − λk

∣∣∣ ≥ π

4 |1 + 2b|
(±k, n = 0, 1, ...; 0 ≤ θ ≤ 2π).

Let us consider the following arcs of the circle On:⋃
a+1na

+
2n =

{
λ : λ = rne

iθ, θ1 ≤ θ ≤ θ2

}
,

⋃
a+2na

−
1n =

{
λ : λ = rne

iθ, θ2 ≤ θ ≤ θ1 + π
}
,
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⋃
a−2na

+
1n =

{
λ : λ = rne

iθ, θ2 + π ≤ θ ≤ θ1 + 2π
}
.

Denote by Ωn and Ω+
n the closed contours

Ωn = Γn,+
⋃ ⋃

a+2na
−
1n

⋃
Γn,−

⋃ ⋃
a−2na

+
1n,

Ω+
n = Γn,+

⋃ ⋃
a+2na

+
1n,

where
Γn,± = {±λ : λ ∈ Γ, |λ| ≤ rn} .

Formally passing to the limit as x → +0, x → 1− 0 under the integral sign in

U (t, x) = − 1

π i

∫
Γ
λ eλ

2
∫ t
0 p(τ)dτdλ

∫ 1

0
G(x, ξ, λ)(ξ + b)2 φ (ξ) dξ, (28)

and using the properties of the Green function, we obtain:

U(t, 0) = 0, U(t, 1) = 0, (29)

for t ∈ (0, T ].

Formally, taking the operation ∂
∂t ,

∂2

∂x2 under the integral sign in (28), we
find:

(x+ b)2 Ut − P (t) Uxx =
1

πi
P (t) · (x+ b)2 φ(x)

∫
Γ
λeλ

2
∫ t
0 p(τ)dτdλ (30)

for (t, x) ∈ (0, T ]× [0, 1].
Note that due to the condition 30 we have∫ 1

0
G(x, ξ, λ)(ξ + b)2φ(ξ)dξ =

φ(x)

λ2
+

1

λ2

∫ 1

0
G(x, ξ, λ)φ′′(ξ)dξ.

Rewrite formula (28) in the form

U(t, x) = U1(t, x) + U2(t, x), (31)

where

U1(t, x) =
1

πi
φ(x)

∫
Γ

1

λ
eλ

2
∫ t
0 P (τ)dτdλ, (32)

U2(t, x) =
1

πi

∫
Γ

1

λ
eλ

2
∫ t
0 P (τ)dτdλ

∫ 1

0
G(x, ξ, λ)φ′′(ξ)dξ, (33)
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U2(0, x) =
1

πi

∫
Γ

1

λ
dλ

∫ 1

0
G(x, ξ, λ)φ

′′
(ξ)dξ. (34)

Let us calculate the integrals over Γ on the right-hand sides of formulas (30),
(32), (34). Let

γk (Γ) =

∫
Γ
λ2k−1 eλ

2
∫ t
0 P (τ)dτdλ (k = 0, 1). (35)

Obviously,

γk (Γ) = lim
n→∞

γk
(
Γn,+

)
=

1

2
· lim
n→∞

[
γk
(
Γn,+

)
+ γk

(
Γn,−)] .

On the other hand, using Lemma 2 we have

lim
n→∞

γk

( ⋃
a+2na

−
1n

)
= 0, lim

n→∞
γk

( ⋃
a−2na

+
1n

)
= 0. (36)

Consequently,

γk (Γ) =
1

2
lim
n→∞

[
γk
(
Γn,+

)
+ γk

( ⋃
a+2na

−
1n

)
+ γk

(
Γn,−)+ γk

(
a−2na

+
1n

)]
=

=
1

2
· lim
n→∞

γk (Ωn) , (37)

for t > 0 and k = 0, 1. But γk (Ωn) is an integral of the function λ2k−1eλ
2t(αt+β)

over the closed contour Ωn. Therefore

γk (Ωn) =

{
2πi, for k = 0
0, for k = 1.

Then, allowing for formulas (30), (32), (35), (37), we deduce:

(x+ b)2 Ut − P (t) Uxx = 0 (38)

and
U1(t, x) = φ(x), (39)

for (t, x) ∈ (0, T ]× [0, 1].
Considering the estimates (∗) for the Green function of the spectral problem

(8)-(9) and

⋃
a+2na

−
1n ⊂ Rδ ⊂ (S3

⋃
S4) (see Lemma 3), we have :

lim
n→∞

1

πi

∫
⋃

a+2na
−
1n

1

λ
dλ

∫ 1

0
G(x, ξ, λ)φ

′′
(ξ)dξ = 0,
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uniformly with respect to x ∈ [0, 1]. Consequently, from (34) we have :

U2 (0, x) =
1

πi
lim
n→∞

∫
Γn,+

⋃
a+2na

−
1n

1

λ
dλ

∫ 1

0
G(x, ξ, λ)φ′′(ξ)dξ, (40)

i.e.

U2 (0, x) = 0. (41)

Using the equalities (31), (39), (41), we have:

lim
t→+0

U (t, x) = lim
t→+0

[U1 (t, x) + U2 (t, x)] =

= lim
t→+0

[φ (x) + U2 (t, x)] = φ (x) + U2 (0, x) = φ (x) . (42)

The theorem is proved. ◀
Thus, the function U (t, x), for t > 0, 0 ≤ x ≤ 1 defined by the formula (**),

belongs to the space C1,2 ((0, T ]× [0, 1]) (see (28)), satisfies the equation (3) for
0 < t ≤ T, 0 ≤ x ≤ 1 (see (35)) boundary conditions (5) for 0 < t ≤ T (see
(29)), and (42) is valid for it with 0 ≤ x ≤ 1 . So it is clear that if we define
this function for t = 0, 0 ≤ x ≤ 1 by the equality U (0, x) = φ (x), then it will
be an element of the space C1,2 ((0, T ]× [0, 1])

⋂
C ([0, T ]× [0, 1]) satisfying the

equalities (3) for 0 < t ≤ T, 0 ≤ x ≤ 1, (4) for 0 ≤ x ≤ 1 and (5) for 0 ≤ t ≤ T
(for t = 0 by virtue of the condition φ (0) = φ (1) = 0).

The theorem is proved. ◀
Remark 1. The proved theorem covers a class that contains not only

parabolic equations, but also some types of non-parabolic ones. For example,
equation (3) satisfies the conditions of this theorem, but it is not parabolic.

Remark 2. To prove the solvability of problem (3)-(5), condition 1 is not
necessary. It was introduced for clarity only. In fact, it would be possible to
single out all possible cases of solvability only provided |2b+ 1| > 1, needed to
use the appropriate spectral theory [3].
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