On the Fourier Transform of the Convolution of a Distribution and a Function Belonging to the Space $S_{0}(\mathbb{R})$

E. Iseni*, B. Bedjeti, V. Manova Erakovikj, Sh. Rexhepi

Abstract

In this paper we consider the Fourier transform of the convolution of a distribution and a function which is an element of the space $S_{0}(\mathbb{R})$. Also, we give an application of the obtained result to the sequences that converge in the same space, and we give their analytic representation.

Key Words and Phrases: Fourier transform, convolution, distribution, space $S_{0}(\mathbb{R})$.
2010 Mathematics Subject Classifications: 46F20, 44A15, 46F12

1. Introduction

We will use general notations found in $[2,4,5]$. We denote with $S(\mathbb{R})$ the space of all functions of rapid decrease $\varphi \in C^{\infty}(\mathbb{R})$ for which

$$
\rho_{k, n}^{1}(\varphi)=\sup _{x \in \mathbb{R}}\left|x^{k} \varphi^{(n)}(x)\right|<\infty, \quad \forall k, n \in \mathbb{N}_{0}
$$

The dual space of $S(\mathbb{R})$ is the space of tempered distributions denoted by $S^{\prime}(\mathbb{R})$.
L. Schwarts has considered the Fourier transform F of distributions in S^{\prime}. The space S^{\prime} has the important property that the Fourier transform of distribution in S^{\prime} is also distribution in S^{\prime}.

If $\varphi \in S$, then the Fourier transform of the function φ is defined as

$$
F(\varphi, z)=\int_{\mathbb{R}} \varphi(t) e^{i t z} d t
$$

and it is an element of S.
*Corresponding author.
http://www.azjm.org (c) 2010 AZJM All rights reserved.

Also, for $\psi \in S$, the inverse of Fourier transform is defined as

$$
F^{-1}(\psi, z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \psi(t) e^{-i t z} d t
$$

and it is an elements of the space S.
For $T \in S^{\prime}$, the Fourier transform and the inverse Fourier transform are defined by
$\langle F(T), \varphi\rangle=\left\langle T_{t}, F(\varphi, t)\right\rangle \quad$ and $\quad\left\langle F^{-1}(T), \varphi\right\rangle=\left\langle T_{t}, F^{-1}(\varphi, t)\right\rangle, \quad \varphi \in S$, respectively $([3,8])$.

The function $\varphi \in L^{2}(\mathbb{R})$ is called a progressive (regressive) function if and only if $\operatorname{supp} \hat{\varphi} \subseteq(0, \infty](\operatorname{supp} \hat{\varphi} \subseteq[-\infty, 0))$, where $\hat{\varphi}(z)=F(\varphi,-2 \pi z)$.
Lemma 1 ([6]). Let $\varphi \in L^{2}(\mathbb{R})$ be a progressive function. Then the following conditions are equivalent:

1. $\sup _{x \in \mathbb{R}}\left(1+|x|^{2}\right)^{p / 2}|\varphi(x)|+\sup _{w \geq 0} \frac{(1+w)^{2 p+1}}{w^{p}}|\widehat{\varphi}(w)|<\infty, \forall p>0$;
2. $\sup _{x \in \mathbb{R}}\left(1+|x|^{2}\right)^{p / 2}|\varphi(x)|+\sup _{w \geq 0}\left(1+w^{2}\right)^{p / 2}|\widehat{\varphi}(w)|<\infty, \forall p>0$.

Definition 1. i) Let $\varphi \in L^{2}(\mathbb{R})$ be a progressive function. Then $\varphi \in S_{+}(\mathbb{R})$ if and only if condition 1) or condition 2) from Lemma 1 is true.
ii) $\varphi \in S_{-}(\mathbb{R}) \Leftrightarrow \varphi(-x) \in S_{+}(\mathbb{R})$.
iii) $S_{0}(\mathbb{R})=S_{+}(\mathbb{R}) \otimes S_{-}(\mathbb{R})$.

The space $S_{0}(\mathbb{R})$ may be defined as a space of all functions of $S(\mathbb{R})$ with all its moments zero, i.e. $\varphi \in S_{0}(\mathbb{R})$ if and only if $\int_{\mathbb{R}} x^{m} \varphi(x) d x=0, \forall m \in \mathbb{N}_{0}$, or $\widehat{\varphi}^{(n)}(0)=0, \forall n \in \mathbb{N}_{0}$.

It is true that $S_{0}(\mathbb{R}) \subset S(\mathbb{R})$ is dense and $S_{0}^{\prime}(\mathbb{R}) \simeq S^{\prime}(\mathbb{R}) / P(\mathbb{R})$, where $P(\mathbb{R})$ is a space of polynomials and $S_{0}^{\prime}(\mathbb{R})$ is space of Lizorkin distributions.

For $\alpha \in \mathbb{Z}^{+} \cup\{0\}$, the functions

$$
x_{+}^{\alpha}=\left\{\begin{array}{ll}
x^{\alpha}, & x>0 \\
0, & x \leq 0
\end{array} \text { and } x_{-}^{\alpha}= \begin{cases}(-x)^{\alpha}, & x<0 \\
0, & x \geq 0\end{cases}\right.
$$

define Lizorkin distributions

$$
x_{+}^{\alpha}: \varphi \rightarrow \int_{0}^{\infty} x^{\alpha} \varphi(x) d x
$$

and

$$
x_{-}^{\alpha}: \varphi \rightarrow \int_{-\infty}^{0}(-x)^{\alpha} \varphi(x) d x, \varphi(x) \in S(\mathbb{R})
$$

i.e. $\left\langle x_{+}^{\alpha}, \varphi\right\rangle=\int_{0}^{\infty} x^{\alpha} \varphi(x) d x \quad$ and $\quad\left\langle x_{-}^{\alpha}, \varphi\right\rangle=\int_{-\infty}^{0}(-x)^{\alpha} \varphi(x) d x, \varphi(x) \in S(\mathbb{R})$.

Theorem 1 ([1, 7]). Let $f \in S, n \in \mathbb{N}, \alpha \in \mathbb{R} /\{0\}$. Then

1) $F\left(f^{(n)}, \omega\right)=(-i \omega)^{n} F(f(\omega))$;
2) $F(f(t-a), \omega)=e^{a w i} F(f(\omega))$;
3) $F(f(a t), \omega)=\frac{1}{|a|} F\left(f\left(\frac{\omega}{a}\right)\right)$.

Theorem 2 ([1]). Let $T \in S^{\prime}$. Then

1) $F\left(T^{(n)}\right)=(-i t)^{n} F(T)$,
2) $F(T)=S, \quad S^{(n)}=F\left((i \omega)^{n} T\right)$.

Theorem 3 ([3]). If $T \in D^{\prime}$ is an arbitrary distribution, then $T=\sum_{j=1}^{\infty} T_{j}$, where each T_{j} has compact support and the following two conditions hold:
a) Any compact subset of the real line intersects with supports of only finitely many supports of T_{j}.
b) $\lim _{N \rightarrow \infty} \sum_{j=1}^{N}\left\langle T_{j}, \phi\right\rangle=\langle T, \phi\rangle$ for all $\phi \in D$.

2. Main results

Theorem 4. Let $T \in \mathcal{D}^{\prime}$ be with compact support and let $\varphi \in S_{0}(\mathbb{R})$. Then the Fourier transform of the convolution of the distribution T and the function φ is a function of the space $S_{0}(\mathbb{R})$ and equals to the product of their Fourier transforms, i.e.

$$
F(T * \varphi, \omega)=F(T, \omega) \cdot F(\varphi, \omega)
$$

Proof. Since T has compact support, T is a tempered distribution and the convolution $T * \varphi$, for $\varphi \in S_{0}(\mathbb{R})$, is a function of the space $S(\mathbb{R})$. We will prove that it belongs to the space $S_{0}(\mathbb{R})$.
Since

$$
\begin{aligned}
& F^{(n)}((T * \varphi), \omega)=F\left((i \omega)^{n}(T * \varphi), \omega\right)=F\left((i \omega)^{n}\left\langle T_{t}, \varphi(x-t)\right\rangle, \omega\right)= \\
& =F\left(\left\langle T_{t},(i \omega)^{n} \varphi(x-t)\right\rangle, \omega\right)=\left\langle T_{t}, F\left((i \omega)^{n} \varphi(x-t), \omega\right)\right\rangle= \\
& =\left\langle T_{t},(i \omega)^{n} F(\varphi(x-t), \omega)\right\rangle=(i \omega)^{n}\left\langle T_{t}, F(\varphi(x-t), \omega)\right\rangle
\end{aligned}
$$

we have $F^{(n)}((T * \varphi), 0)=0$, so $\widehat{T * \varphi}^{(n)}(0)=0$ which proves that $T * \varphi$ belongs to the space $S_{0}(\mathbb{R})$.

Next, we will prove that for a function $\varphi \in S_{0}(\mathbb{R})$, the Fourier transform of the convolution of the distribution T and the function φ belongs to $S_{0}(R)$, i.e. $F(T * \varphi, \omega) \in S_{0}(\mathbb{R})$. Firstly, we will prove that if $\varphi \in S_{0}(\mathbb{R})$, then $F(\varphi, \omega) \in$ $S_{0}(\mathbb{R})$. Indeed, since $F^{(n)}(F(\varphi, \omega), \omega)=F^{(n+1)}(\varphi, \omega)$, for $\varphi \in S_{0}(\mathbb{R})$ we have
$F^{(n)}(F(\varphi, \omega), 0)=0$, so $\widehat{F(\varphi, \omega)}{ }^{(n)}(0)=0$, which proves that $F(\varphi, \omega)$ belongs to the space $S_{0}(\mathbb{R})$. Now, since we already proved that $T * \varphi \in S_{0}(\mathbb{R})$, for $\varphi \in$ $S_{0}(\mathbb{R})$ we conclude that $F(T * \varphi, \omega) \in S_{0}(\mathbb{R})$.

We have

$$
\begin{equation*}
F(T * \varphi, \omega)=\int_{\mathbb{R}}(T * \varphi)(x) e^{i \omega x} d x=\int_{\mathbb{R}}\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x} d x \tag{1}
\end{equation*}
$$

Since the integral on the right-hand side of (1) is a Riemann integral, we may rewrite it in the following form:

$$
\int_{\mathbb{R}}\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x} d x=\lim _{N \rightarrow \infty} \int_{-N}^{N}\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x} d x
$$

for $N=1,2,3, \ldots$

$$
\begin{aligned}
& \int_{\mathbb{R}} l^{m} F(T * \varphi) d l=\int_{\mathbb{R}} l^{m} \int_{\mathbb{R}}\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x} d x d l \\
& =\int_{\mathbb{R}} l^{m} \lim _{N \rightarrow \infty} \int_{-N}^{N}\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x} d x d l=\lim _{N \rightarrow \infty} \int_{\mathbb{R}} l^{m} \int_{-N}^{N}\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x} d x d l
\end{aligned}
$$

The function $f(x)=\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x}$ is continuous and, by the first mean value theorem for integrals, it follows that that there exists a point $x_{N} \in[-N, N]$ such that

$$
\int_{\mathbb{R}} l^{m} \int_{-N}^{N}\left\langle T_{t}, \varphi(x-t)\right\rangle e^{i \omega x} d x d l=2 N \int_{\mathbb{R}} l^{m}\left\langle T_{t}, \varphi\left(x_{N}-t\right) e^{i \omega x_{N}}\right\rangle d l
$$

Now, we consider the sequences of functions $\left(f_{N}(t)\right)$, where

$$
f_{N}(t)=2 N \varphi\left(x_{N}-t\right) e^{i \omega x_{N}}=\int_{-N}^{N} \varphi(x-t) e^{i \omega x} d x
$$

We will show that the sequence $\left(f_{N}(t)\right)$ is uniformly bounded and equicontinuous. Since

$$
\left|f_{N}(t)\right|=\left|\int_{-N}^{N} \varphi(x-t) e^{i \omega x} d x\right| \leq \int_{-N}^{N}|\varphi(x-t)| d x \leq\|\varphi\|_{1}
$$

$\left(f_{N}(t)\right)$ is a uniformly bounded sequence.
Now, let $\varepsilon>0$ be a given number and $t^{\prime}, t^{\prime \prime} \in[-N, N]$ be points such that $\left|t^{\prime}-t^{\prime \prime}\right|<\delta$ for some $\delta>0$.

Then

$$
\left|f_{N}\left(t^{\prime \prime}\right)-f_{N}\left(t^{\prime}\right)\right|=\left|\int_{-N}^{N}\left[\varphi\left(x-t^{\prime \prime}\right)-\varphi\left(x-t^{\prime}\right)\right] e^{i \omega x} d x\right|
$$

$$
\leq \int_{-N}^{N}\left|\varphi\left(x-t^{\prime \prime}\right)-\varphi\left(x-t^{\prime}\right)\right| d x
$$

For a given $\varepsilon>0$ there exists $\delta>0$ such that for all $t^{\prime}, t^{\prime \prime} \in[-N, N]$ with $\left|t^{\prime \prime}-t^{\prime}\right|<\delta$, we have

$$
\int_{-N}^{N}\left|\varphi\left(x-t^{\prime \prime}\right)-\varphi\left(x-t^{\prime}\right)\right| d x<\varepsilon
$$

Thus, the sequence $\left(f_{N}(t)\right)$ is equicontinuous.
Since

$$
\lim _{N \rightarrow \infty} f_{N}(t)=\int_{-\infty}^{\infty} \varphi(x-t) e^{i \omega x} d x
$$

the Arzela-Ascoli theorem asserts that the sequence $\left(f_{N}(t)\right)$ converges uniformly on every compact subset of \mathbb{R} to the function

$$
\int_{\mathbb{R}} \varphi(x-t) e^{i \omega x} d x
$$

The same is true for every sequence $\left(f_{N}{ }^{(k)}(t)\right)$. Thus, we have shown that the sequence $\left(f_{N}(t)\right)$ converges to the function

$$
\int_{-\infty}^{\infty} \varphi(x-t) e^{i \omega x} d x
$$

in E.
Since T is a continuous linear functional in the space E, the sequence

$$
\int_{\mathbb{R}} l^{m}\left\langle T_{t}, \varphi\left(x_{N}-t\right) e^{i l x_{N}}\right\rangle d l
$$

converges to the function

$$
\int_{\mathbb{R}} l^{m}\left\langle T_{t}, \int_{-\infty}^{\infty} \varphi(x-t) e^{i l x} d x\right\rangle d l
$$

If we set $u=x-t$, then

$$
\begin{aligned}
& \int_{\mathbb{R}} l^{m}\left\langle T_{t}, \int_{-\infty}^{\infty} \varphi(x-t) e^{i l x} d x\right\rangle d l=\int_{\mathbb{R}} l^{m} \lim _{N \rightarrow \infty}\left\langle T_{t}, f_{N}(t)\right\rangle d l \\
& =\int_{\mathbb{R}} l^{m}\left\langle T_{t}, e^{i l t} \int_{\mathbb{R}} \varphi(u) e^{i l u} d u\right\rangle d l \\
& =\int_{\mathbb{R}} l^{m}\left\langle T_{t}, e^{i l t}\right\rangle \cdot \int_{\mathbb{R}} \varphi(u) e^{i l u} d u d l=\int_{\mathbb{R}} l^{m} F(T, l) \cdot F(\varphi, l) d l .
\end{aligned}
$$

We conclude that $\int_{\mathbb{R}} l^{m} F(T, l) \cdot F(\varphi, l) d l=0$. This implies that $F(T) \cdot F(\varphi) \in$ S_{0} and $F(T * \varphi, \omega)=F(T, \omega) \cdot F(\varphi, \omega)$, which completes the proof.

Theorem 5. Let $T \in D^{\prime}$ have compact support and let $\left(\varphi_{k}\right)$ be a sequence in $S_{0}(\mathbb{R})$ such that $\varphi_{k} \rightarrow \varphi$ in S_{0}. Then the sequence $F\left(T * \varphi_{k}, \omega\right)$ converges and it is element of S_{0}.

Proof. The proof is similar to that of Theorem 4. Since $T * \varphi_{k}$ belongs to the space S_{0}, for every $k=1,2,3, \ldots$, it has a Fourier transform.

Thus,

$$
F\left(T * \varphi_{k}, \omega\right)=\int_{\mathbb{R}}\left(T * \varphi_{k}\right)(x) e^{i \omega x} d x \quad \text { for } \quad k=1,2,3, \ldots
$$

We will show that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} F\left(T * \varphi_{k}, \omega\right)=F(T, \omega) \cdot \lim _{k \rightarrow \infty} F\left(\varphi_{k}, \omega\right)= \\
=F(T, \omega) \cdot F(\varphi, \omega)
\end{gathered}
$$

We have

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \int_{\mathbb{R}} l^{m}\left\langle T_{t}, \int_{-\infty}^{\infty} \varphi_{k}(x-t) e^{i l x} d x\right\rangle d l \\
=\lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} \int_{\mathbb{R}} l^{m} \int_{-N}^{N}\left\langle T_{t}, \varphi_{k}(x-t) e^{i l x} d x\right\rangle d l .
\end{gathered}
$$

Now we consider the sequence $\left(f_{N, k}(t)\right)$, where

$$
\begin{gathered}
f_{N, k}(t)=2 N \varphi_{k}\left(x_{N}-t\right) e^{i \omega x_{N}} \\
=\int_{-N}^{N} \varphi_{k}(x-t) e^{i \omega x} d x
\end{gathered}
$$

The sequence $\left(f_{N, k}\right)$ is uniformly bounded and equicontinuous.
Thus, the sequence

$$
f_{N, k}(t)=2 N \varphi_{k}\left(x_{N}-t\right) e^{i \omega x_{N}}
$$

converges to the function

$$
\int_{-\infty}^{\infty} \varphi_{k}(x-t) e^{i \omega x} d x
$$

in E.
Finally, if we take a limit as $k \rightarrow \infty$, we get

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \int_{\mathbb{R}} l^{m} F\left(T * \varphi_{k}, l\right) d l=\lim _{k \rightarrow \infty} \int_{\mathbb{R}} l^{m}\left\langle T_{t}, \int_{-\infty}^{\infty} \varphi_{k}(x-t) e^{i l x} d x\right\rangle d l \\
& =\lim _{k \rightarrow \infty} \lim _{N \rightarrow \infty} \int_{\mathbb{R}} l^{m} \int_{-N}^{N}\left\langle T_{t}, \varphi_{k}\left(x_{N}-t\right) e^{i l x_{N}} d x\right\rangle d l \\
& =\lim _{k \rightarrow \infty} \int_{\mathbb{R}} l^{m} \int_{-\infty}^{\infty}\left\langle T_{t}, \varphi_{k}(x-t) e^{i l x} d x\right\rangle d l=\lim _{k \rightarrow \infty} \int_{\mathbb{R}} l^{m} F(T, l) \cdot F\left(\varphi_{k}, l\right) d l=0 .
\end{aligned}
$$

So we have $\lim _{k \rightarrow \infty} F\left(T * \varphi_{k}, \omega\right)=\lim _{k \rightarrow \infty} F(T, \omega) \cdot F\left(\varphi_{k}, \omega\right)=F(T, \omega) \cdot F(\varphi, \omega)$. The proof is complete.

Theorem 6. Let $T_{k} \in D^{\prime}$ be distributions with compact support, $\varphi \in S_{0}(\mathbb{R})$ and $\lim _{k \rightarrow \infty} F\left(T_{k} * \varphi ; \omega\right)$ and $\lim _{k \rightarrow \infty} F\left(T_{k}, \omega\right) \cdot F(\varphi, \omega)$ exist. Then

$$
\lim _{k \rightarrow \infty} F\left(T_{k} * \varphi ; \omega\right)=\lim _{k \rightarrow \infty} F\left(T_{k}, \omega\right) \cdot F(\varphi, \omega)
$$

Proof. Since every T_{k} has a compact support, for every $\varphi \in S_{0}(\mathbb{R})$ the convolution $T_{k} * \varphi$ belongs to $S_{0}(\mathbb{R})$ and hence it has the Fourier transform $F\left(T_{k} * \varphi ; \omega\right)$, which also belongs to the space $S_{0}(\mathbb{R})$. Thus, from the above lemma, we have

$$
F\left(T_{k} * \varphi ; \omega\right)=F\left(T_{k}, \omega\right) \cdot F(\varphi, \omega)
$$

Since the sequence of the Fourier transforms of $S_{0}(\mathbb{R})$ converges uniformly on \mathbb{R} to the Fourier transform of $S_{0}(\mathbb{R})$, by taking limits on both sides we get

$$
\lim _{k \rightarrow \infty} F\left(T_{k} * \varphi ; \omega\right)=\lim _{k \rightarrow \infty} F\left(T_{k}, \omega\right) \cdot F(\varphi, \omega)
$$

Theorem 7. Let $f, g \in S_{0}$. Then $\int_{-\infty}^{\infty} f(t) F(g, t) d t=\int_{-\infty}^{\infty} F(f, w) g(w) d w$.
Proof. Since $f, g \in S_{0}$, we have $F(f, w), F(g, t) \in S_{0}$. From $S_{0} \subset S \subset L^{P}$, we have $f, g \in L^{1}$. On the other hand, the product of two S_{0} functions is in L^{1}. Hence the integral $\int_{-R}^{R} \int_{-A}^{A}\left|f(t) g(w) e^{i w t}\right| d w d t$ exists and, by Fubini's theorem, we get

$$
\int_{-R}^{R} f(t)\left[\int_{-A}^{A} e^{i w t} g(w) d w\right] d t=\int_{-A}^{A} g(w)\left[\int_{-R}^{R} e^{i w t} f(t) d t\right] d w
$$

So,

$$
\int_{-\infty}^{\infty} f(t)\left[\int_{-A}^{A} e^{i w t} g(w) d w\right] d t=\lim _{R \rightarrow \infty} \int_{-A}^{A} g(w)\left[\int_{-R}^{R} e^{i w t} f(t) d t\right] d w
$$

By Schwartz's inequality and Plancherel transform, we have

$$
\left|\int_{-A}^{A} g(w)\left[\int_{|t|>R} e^{i w t} f(t) d t\right] d w\right|^{2} \leq \int_{-A}^{A}|g(w)|^{2} d w 2 \pi \int_{|t|>R}|f(t)|^{2} d t
$$

and the right-hand side tends to zero. Hence

$$
\lim _{R \rightarrow \infty} \int_{-A}^{A} g(w)\left[\int_{-R}^{R} e^{i w t} f(t) d t\right] d w=\int_{-A}^{A} g(w) F(f, w) d w
$$

which proves the theorem.

Theorem 8. Let $\varphi \in S_{0}$. Let $g(w)=F(\varphi, w)$ be the Fourier transform of φ. Let $\hat{g}(z)$ be the Cauchy representation of $g, z=x+i y$. Then

$$
\hat{g}(z)= \begin{cases}\int_{0}^{\infty} \varphi(t) e^{i t z} d t, & y>0 \\ -\int_{-\infty}^{0} \varphi(t) e^{i t z} d t, & y<0\end{cases}
$$

Proof. If $\varphi \in S_{0}$, while $S_{0} \subset L_{1}$, then $\varphi, g \in L_{1}$, which is defined as

$$
\hat{g}(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{g(w)}{w-z} d w
$$

exists for $y \neq 0$. We have

$$
\frac{1}{2 \pi i(w-z)}= \begin{cases}F^{-1}\left(H(t) e^{i t z}, w\right), & y>0 \\ -F^{-1}\left(H(-t) e^{i t z}, w\right), & y<0\end{cases}
$$

Using Parseval's formula and the fact that $\varphi \in L_{1}$ and $\mathrm{H}(\mathrm{t}) \mathrm{e}^{i t z} \in L_{1}$, we get

$$
\hat{g}(z)= \begin{cases}\int_{0}^{\infty} \varphi(t) e^{i t z} d t, & y>0 \\ -\int_{-\infty}^{0} \varphi(t) e^{i t z} d t, & y<0\end{cases}
$$

References

[1] H. Bremermann, Raspredelenija, kompleksnye peremennye i preobrazovanija Fur'e, Perevod s anglijskogo VP Pavlova i BM Stepanova. Pod red. VS Vladimirova, Izdat. Mir", 1968.
[2] E.J. Beltrami, M.R. Wohlers, Distributions and the boundary values of analytic functions, Academic Press, New York, 1966.
[3] R. Carmichael, D. Mitrovic, Distributions and analytic functions, New York, 1989.
[4] L. Jantcher, Distributionen, Walter de Gruyter, Berlin, New York, 1971.
[5] N. Reckoski, One proof for the analytic representation of distributions, Matematicki Bilten, 28, 2004, 19-30.
[6] D. Rakic, Malotalasna transformacija u prostorima distribucija i ultradistribucija i teoreme Abelovog i Tauberovog tipa [PhD dissertation]. Novisad: Prirodno matematicki fakultet, 2010.
[7] E. Iseni, S. Rexhepi, B. Bedzeti, Jump of distribution of D L2 through the analytic representation, IJMSEA, 12(II), 2018, 23-27.
[8] E. Iseni, S. Rexhepi, B. Shaini, S. Kera, Some results on the analytic representation including the convolution in the L_{p} spaces, J. Math. Comput. Sci., 10(6), 2020, 2493-2502.

Egzona Iseni
Mother Teresa University, Department of Mathematics, Skopje, North Macedonia
E-mail:egzona.iseni@unt.edu.mk
Bedrije Bedjeti
University of Tetovo, Department of Mathematics, Tetovo, North Macedonia
E-mail:bedrije.bexheti@unite.edu.mk
Vesna Manova Erakovikj
Ss. Cyril and Methodius University, Department of Mathematics, Skopje, North Macedonia
E-mail:vesname@pmf.ukim.mk
Shpetim Rexhepi
Mother Teresa University, Department of Mathematics, Skopje, North Macedonia
E-mail:shpetim.rexhepi@unt.edu.mk

Received 02 March 2023
Accepted 03 May 2023

