Azerbaijan Journal of Mathematics V. 14, No 1, 2024, January ISSN 2218-6816 https://doi.org/10.59849/2218-6816.2024.1.35

On the Fourier Transform of the Convolution of a Distribution and a Function Belonging to the Space $S_0(\mathbb{R})$

E. Iseni^{*}, B. Bedjeti, V. Manova Erakovikj, Sh. Rexhepi

Abstract. In this paper we consider the Fourier transform of the convolution of a distribution and a function which is an element of the space $S_0(\mathbb{R})$. Also, we give an application of the obtained result to the sequences that converge in the same space, and we give their analytic representation.

Key Words and Phrases: Fourier transform, convolution, distribution, space $S_0(\mathbb{R})$. 2010 Mathematics Subject Classifications: 46F20, 44A15, 46F12

1. Introduction

We will use general notations found in [2,4,5]. We denote with $S(\mathbb{R})$ the space of all functions of rapid decrease $\varphi \in C^{\infty}(\mathbb{R})$ for which

$$\rho_{k,n}^{1}(\varphi) = \sup_{x \in \mathbb{R}} \left| x^{k} \varphi^{(n)}(x) \right| < \infty, \ \forall k, n \in \mathbb{N}_{0}.$$

The dual space of $S(\mathbb{R})$ is the space of tempered distributions denoted by $S'(\mathbb{R})$.

L. Schwarts has considered the Fourier transform F of distributions in S'. The space S' has the important property that the Fourier transform of distribution in S' is also distribution in S'.

If $\varphi \in S$, then the Fourier transform of the function φ is defined as

35

$$F\left(\varphi,z\right) = \int_{\mathbb{R}} \varphi(t) e^{itz} dt$$

and it is an element of S.

http://www.azjm.org

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

Also, for $\psi \in S$, the inverse of Fourier transform is defined as

$$F^{-1}(\psi, z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(t) e^{-itz} dt$$

and it is an elements of the space S.

For $T \in S'$, the Fourier transform and the inverse Fourier transform are defined by

 $\langle F(T), \varphi \rangle = \langle T_t, F(\varphi, t) \rangle$ and $\langle F^{-1}(T), \varphi \rangle = \langle T_t, F^{-1}(\varphi, t) \rangle, \quad \varphi \in S$, respectively ([3,8]).

The function $\varphi \in L^2(\mathbb{R})$ is called a progressive (regressive) function if and only if $\operatorname{supp} \dot{\varphi} \subseteq (0, \infty]$ ($\operatorname{supp} \dot{\varphi} \subseteq [-\infty, 0)$), where $\dot{\varphi}(z) = F(\varphi, -2\pi z)$.

Lemma 1 ([6]). Let $\varphi \in L^2(\mathbb{R})$ be a progressive function. Then the following conditions are equivalent:

1.
$$\sup_{x \in \mathbb{R}} (1+|x|^2)^{p/2} |\varphi(x)| + \sup_{w \ge 0} \frac{(1+w)^{2p+1}}{w^p} |\widehat{\varphi}(w)| < \infty, \ \forall p > 0;$$

2.
$$\sup_{x \in \mathbb{R}} (1+|x|^2)^{p/2} |\varphi(x)| + \sup_{w \ge 0} (1+w^2)^{p/2} |\widehat{\varphi}(w)| < \infty, \ \forall p > 0.$$

Definition 1. i) Let $\varphi \in L^2(\mathbb{R})$ be a progressive function. Then $\varphi \in S_+(\mathbb{R})$ if and only if condition 1) or condition 2) from Lemma 1 is true. ii) $\varphi \in S_-(\mathbb{R}) \Leftrightarrow \varphi(-x) \in S_+(\mathbb{R})$. iii) $S_0(\mathbb{R}) = S_+(\mathbb{R}) \otimes S_-(\mathbb{R})$.

The space $S_0(\mathbb{R})$ may be defined as a space of all functions of $S(\mathbb{R})$ with all its moments zero, i.e. $\varphi \in S_0(\mathbb{R})$ if and only if $\int_{\mathbb{R}} x^m \varphi(x) dx = 0, \forall m \in \mathbb{N}_0$, or $\widehat{\varphi}^{(n)}(0) = 0, \forall n \in \mathbb{N}_0$.

It is true that $S_0(\mathbb{R}) \subset S(\mathbb{R})$ is dense and $S'_0(\mathbb{R}) \simeq S'(\mathbb{R})/P(\mathbb{R})$, where $P(\mathbb{R})$ is a space of polynomials and $S'_0(\mathbb{R})$ is space of Lizorkin distributions.

For $\alpha \in \mathbb{Z}^+ \cup \{0\}$, the functions

$$x_{+}^{\alpha} = \begin{cases} x^{\alpha}, & x > 0\\ 0, & x \le 0 \end{cases} \text{ and } x_{-}^{\alpha} = \begin{cases} (-x)^{\alpha}, & x < 0\\ 0, & x \ge 0 \end{cases}$$

define Lizorkin distributions

$$x_{+}^{\alpha}: \varphi \to \int_{0}^{\infty} x^{\alpha} \varphi(x) dx,$$

and

$$x_{-}^{\alpha}:\varphi\to\int_{-\infty}^{0}(-x)^{\alpha}\varphi(x)dx,\,\varphi(x)\in S(\mathbb{R}),$$

i.e. $\langle x_+^{\alpha}, \varphi \rangle = \int_0^{\infty} x^{\alpha} \varphi(x) dx$ and $\langle x_-^{\alpha}, \varphi \rangle = \int_{-\infty}^0 (-x)^{\alpha} \varphi(x) dx, \, \varphi(x) \in S(\mathbb{R}).$

36

Theorem 1 ([1, 7]). Let $f \in S$, $n \in \mathbb{N}$, $\alpha \in \mathbb{R}/\{0\}$. Then

1)
$$F(f^{(n)},\omega) = (-i\omega)^n F(f(\omega));$$

2) $F(f(t-a),\omega) = e^{awi}F(f(\omega));$

3)
$$F(f(at), \omega) = \frac{1}{|a|}F(f(\frac{\omega}{a})).$$

Theorem 2 ([1]). Let $T \in S'$. Then

1)
$$F(T^{(n)}) = (-it)^n F(T),$$

2) F(T) = S, $S^{(n)} = F((i\omega)^n T)$.

Theorem 3 ([3]). If $T \in D'$ is an arbitrary distribution, then $T = \sum_{j=1}^{\infty} T_j$, where each T_j has compact support and the following two conditions hold:

a) Any compact subset of the real line intersects with supports of only finitely many supports of T_j .

b) $\lim_{N \to \infty} \sum_{j=1}^{N} \langle T_j, \phi \rangle = \langle T, \phi \rangle$ for all $\phi \in D$.

2. Main results

Theorem 4. Let $T \in \mathcal{D}'$ be with compact support and let $\varphi \in S_0(\mathbb{R})$. Then the Fourier transform of the convolution of the distribution T and the function φ is a function of the space $S_0(\mathbb{R})$ and equals to the product of their Fourier transforms, *i.e.*

$$F(T * \varphi, \omega) = F(T, \omega) \cdot F(\varphi, \omega).$$

Proof. Since T has compact support, T is a tempered distribution and the convolution $T * \varphi$, for $\varphi \in S_0(\mathbb{R})$, is a function of the space $S(\mathbb{R})$. We will prove that it belongs to the space $S_0(\mathbb{R})$.

Since

$$F^{(n)}\left((T * \varphi), \omega\right) = F\left((i\omega)^n \left(T * \varphi), \omega\right) = F\left((i\omega)^n \left\langle T_t, \varphi(x-t) \right\rangle, \omega\right) = F\left(\left\langle T_t, (i\omega)^n \varphi(x-t) \right\rangle, \omega\right) = \left\langle T_t, F\left((i\omega)^n \varphi(x-t), \omega\right) \right\rangle = \left\langle T_t, (i\omega)^n F(\varphi(x-t), \omega) \right\rangle = (i\omega)^n \left\langle T_t, F(\varphi(x-t), \omega) \right\rangle,$$

we have $F^{(n)}((T * \varphi), 0) = 0$, so $\widehat{T * \varphi}^{(n)}(0) = 0$ which proves that $T * \varphi$ belongs to the space $S_0(\mathbb{R})$.

Next, we will prove that for a function $\varphi \in S_0(\mathbb{R})$, the Fourier transform of the convolution of the distribution T and the function φ belongs to $S_0(R)$, i.e. $F(T * \varphi, \omega) \in S_0(\mathbb{R})$. Firstly, we will prove that if $\varphi \in S_0(\mathbb{R})$, then $F(\varphi, \omega) \in$ $S_0(\mathbb{R})$. Indeed, since $F^{(n)}(F(\varphi, \omega), \omega) = F^{(n+1)}(\varphi, \omega)$, for $\varphi \in S_0(\mathbb{R})$ we have $F^{(n)}(F(\varphi,\omega),0) = 0$, so $\widehat{F(\varphi,\omega)}^{(n)}(0) = 0$, which proves that $F(\varphi,\omega)$ belongs to the space $S_0(\mathbb{R})$. Now, since we already proved that $T * \varphi \in S_0(\mathbb{R})$, for $\varphi \in S_0(\mathbb{R})$ we conclude that $F(T * \varphi, \omega) \in S_0(\mathbb{R})$.

We have

$$F(T * \varphi, \omega) = \int_{\mathbb{R}} (T * \varphi)(x) e^{i\omega x} dx = \int_{\mathbb{R}} \langle T_t, \varphi(x - t) \rangle e^{i\omega x} dx.$$
(1)

Since the integral on the right-hand side of (1) is a Riemann integral, we may rewrite it in the following form:

$$\int_{\mathbb{R}} \left\langle T_t, \varphi(x-t) \right\rangle e^{i\omega x} dx = \lim_{N \to \infty} \int_{-N}^{N} \left\langle T_t, \varphi(x-t) \right\rangle e^{i\omega x} dx,$$

for $N = 1, 2, 3, \dots$

$$\begin{split} &\int_{\mathbb{R}} l^m F(T * \varphi) dl = \int_{\mathbb{R}} l^m \int_{\mathbb{R}} \left\langle T_t, \varphi(x - t) \right\rangle e^{i\omega x} dx dl \\ &= \int_{\mathbb{R}} l^m \lim_{N \to \infty} \int_{-N}^{N} \left\langle T_t, \varphi(x - t) \right\rangle e^{i\omega x} dx dl = \lim_{N \to \infty} \int_{\mathbb{R}} l^m \int_{-N}^{N} \left\langle T_t, \varphi(x - t) \right\rangle e^{i\omega x} dx dl. \end{split}$$

The function $f(x) = \langle T_t, \varphi(x-t) \rangle e^{i\omega x}$ is continuous and, by the first mean value theorem for integrals, it follows that there exists a point $x_N \in [-N, N]$ such that

$$\int_{\mathbb{R}} l^m \int_{-N}^{N} \left\langle T_t, \varphi(x-t) \right\rangle e^{i\omega x} dx dl = 2N \int_{\mathbb{R}} l^m \left\langle T_t, \varphi(x_N-t) e^{i\omega x_N} \right\rangle dl.$$

Now, we consider the sequences of functions $(f_N(t))$, where

$$f_N(t) = 2N\varphi(x_N - t)e^{i\omega x_N} = \int_{-N}^N \varphi(x - t)e^{i\omega x} dx.$$

We will show that the sequence $(f_N(t))$ is uniformly bounded and equicontinuous. Since

$$|f_N(t)| = \left| \int_{-N}^N \varphi(x-t) e^{i\omega x} dx \right| \le \int_{-N}^N |\varphi(x-t)| \, dx \le \|\varphi\|_1 \,,$$

 $(f_N(t))$ is a uniformly bounded sequence.

Now, let $\varepsilon > 0$ be a given number and $t', t'' \in [-N, N]$ be points such that $|t' - t''| < \delta$ for some $\delta > 0$.

Then

$$\left|f_N(t'') - f_N(t')\right| = \left|\int_{-N}^{N} \left[\varphi(x - t'') - \varphi(x - t')\right] e^{i\omega x} dx\right|$$

On the Fourier Transform of the Convolution of a Distribution

$$\leq \int_{-N}^{N} \left| \varphi(x - t'') - \varphi(x - t') \right| dx.$$

For a given $\varepsilon > 0$ there exists $\delta > 0$ such that for all $t', t'' \in [-N, N]$ with $|t'' - t'| < \delta$, we have

$$\int_{-N}^{N} \left| \varphi(x - t'') - \varphi(x - t') \right| dx < \varepsilon.$$

Thus, the sequence $(f_N(t))$ is equicontinuous. Since

$$\lim_{N \to \infty} f_N(t) = \int_{-\infty}^{\infty} \varphi(x-t) e^{i\omega x} dx,$$

the Arzela-Ascoli theorem asserts that the sequence $(f_N(t))$ converges uniformly on every compact subset of \mathbb{R} to the function

$$\int_{\mathbb{R}} \varphi(x-t) e^{i\omega x} dx.$$

The same is true for every sequence $(f_N^{(k)}(t))$. Thus, we have shown that the sequence $(f_N(t))$ converges to the function

$$\int_{-\infty}^{\infty} \varphi(x-t) e^{i\omega x} dx$$

in E.

Since T is a continuous linear functional in the space E, the sequence

$$\int_{\mathbb{R}} l^m \left\langle T_t, \varphi(x_N - t) e^{ilx_N} \right\rangle dl,$$

converges to the function

$$\int_{\mathbb{R}} l^m \left\langle T_t, \int_{-\infty}^{\infty} \varphi(x-t) e^{ilx} dx \right\rangle dl.$$

If we set u = x - t, then

$$\begin{split} &\int_{\mathbb{R}} l^m \left\langle T_t, \int_{-\infty}^{\infty} \varphi(x-t) e^{ilx} dx \right\rangle dl = \int_{\mathbb{R}} l^m \lim_{N \to \infty} \left\langle T_t, f_N(t) \right\rangle dl \\ &= \int_{\mathbb{R}} l^m \left\langle T_t, e^{ilt} \int_{\mathbb{R}} \varphi(u) e^{ilu} du \right\rangle dl \\ &= \int_{\mathbb{R}} l^m \left\langle T_t, e^{ilt} \right\rangle \cdot \int_{\mathbb{R}} \varphi(u) e^{ilu} du \, dl = \int_{\mathbb{R}} l^m F(T, l) \cdot F(\varphi, l) dl. \end{split}$$

We conclude that $\int_{\mathbb{R}} l^m F(T, l) \cdot F(\varphi, l) dl = 0$. This implies that $F(T) \cdot F(\varphi) \in S_0$ and $F(T * \varphi, \omega) = F(T, \omega) \cdot F(\varphi, \omega)$, which completes the proof.

39

Theorem 5. Let $T \in D'$ have compact support and let (φ_k) be a sequence in $S_0(\mathbb{R})$ such that $\varphi_k \to \varphi$ in S_0 . Then the sequence $F(T * \varphi_k, \omega)$ converges and it is element of S_0 .

Proof. The proof is similar to that of Theorem 4. Since $T * \varphi_k$ belongs to the space S_0 , for every k = 1, 2, 3, ..., it has a Fourier transform.

Thus,

$$F(T * \varphi_k, \omega) = \int_{\mathbb{R}} (T * \varphi_k) (x) e^{i\omega x} dx \quad for \quad k = 1, 2, 3, \dots$$

We will show that

$$\lim_{k \to \infty} F\left(T * \varphi_k, \omega\right) = F\left(T, \omega\right) \cdot \lim_{k \to \infty} F\left(\varphi_k, \omega\right) =$$
$$= F\left(T, \omega\right) \cdot F\left(\varphi, \omega\right).$$

We have

$$\lim_{k \to \infty} \int_{\mathbb{R}} l^m \left\langle T_t, \int_{-\infty}^{\infty} \varphi_k(x-t) e^{ilx} dx \right\rangle dl$$
$$= \lim_{k \to \infty} \lim_{N \to \infty} \int_{\mathbb{R}} l^m \int_{-N}^{N} \left\langle T_t, \varphi_k(x-t) e^{ilx} dx \right\rangle dl.$$

Now we consider the sequence $(f_{N,k}(t))$, where

$$f_{N,k}(t) = 2N\varphi_k(x_N - t)e^{i\omega x_N}$$
$$= \int_{-N}^{N} \varphi_k(x - t)e^{i\omega x} dx.$$

The sequence $(f_{N,k})$ is uniformly bounded and equicontinuous. Thus, the sequence

$$f_{N,k}(t) = 2N\varphi_k(x_N - t)e^{i\omega x_N}$$

converges to the function

$$\int_{-\infty}^{\infty} \varphi_k(x-t) e^{i\omega x} dx$$

in E.

Finally, if we take a limit as $k \to \infty$, we get

$$\begin{split} &\lim_{k\to\infty}\int_{\mathbb{R}}l^{m}F\left(T\ast\varphi_{k},l\right)dl=\lim_{k\to\infty}\int_{\mathbb{R}}l^{m}\left\langle T_{t},\int_{-\infty}^{\infty}\varphi_{k}(x-t)e^{ilx}dx\right\rangle dl\\ &=\lim_{k\to\infty}\lim_{K\to\infty}\int_{\mathbb{R}}l^{m}\int_{-N}^{N}\left\langle T_{t},\varphi_{k}\left(x_{N}-t\right)e^{ilx_{N}}dx\right\rangle dl\\ &=\lim_{k\to\infty}\int_{\mathbb{R}}l^{m}\int_{-\infty}^{\infty}\left\langle T_{t},\varphi_{k}\left(x-t\right)e^{ilx}dx\right\rangle dl=\lim_{k\to\infty}\int_{\mathbb{R}}l^{m}F(T,l)\cdot F(\varphi_{k},l)dl=0. \end{split}$$

On the Fourier Transform of the Convolution of a Distribution

So we have $\lim_{k \to \infty} F(T * \varphi_k, \omega) = \lim_{k \to \infty} F(T, \omega) \cdot F(\varphi_k, \omega) = F(T, \omega) \cdot F(\varphi, \omega)$. The proof is complete.

Theorem 6. Let $T_k \in D'$ be distributions with compact support, $\varphi \in S_0(\mathbb{R})$ and $\lim_{k \to \infty} F(T_k * \varphi; \omega)$ and $\lim_{k \to \infty} F(T_k, \omega) \cdot F(\varphi, \omega)$ exist. Then

$$\lim_{k \to \infty} F(T_k * \varphi; \omega) = \lim_{k \to \infty} F(T_k, \omega) \cdot F(\varphi, \omega).$$

Proof. Since every T_k has a compact support, for every $\varphi \in S_0(\mathbb{R})$ the convolution $T_k * \varphi$ belongs to $S_0(\mathbb{R})$ and hence it has the Fourier transform $F(T_k * \varphi; \omega)$, which also belongs to the space $S_0(\mathbb{R})$. Thus, from the above lemma, we have

$$F(T_k * \varphi; \omega) = F(T_k, \omega) \cdot F(\varphi, \omega)$$

Since the sequence of the Fourier transforms of $S_0(\mathbb{R})$ converges uniformly on \mathbb{R} to the Fourier transform of $S_0(\mathbb{R})$, by taking limits on both sides we get

$$\lim_{k \to \infty} F(T_k * \varphi; \omega) = \lim_{k \to \infty} F(T_k, \omega) \cdot F(\varphi, \omega).$$

◀

Theorem 7. Let $f, g \in S_0$. Then $\int_{-\infty}^{\infty} f(t)F(g,t)dt = \int_{-\infty}^{\infty} F(f,w)g(w)dw$.

Proof. Since $f, g \in S_0$, we have $F(f, w), F(g, t) \in S_0$. From $S_0 \subset S \subset L^P$, we have $f, g \in L^1$. On the other hand, the product of two S_0 functions is in L^1 . Hence the integral $\int_{-R}^{R} \int_{-A}^{A} |f(t)g(w)e^{iwt}| dwdt$ exists and, by Fubini's theorem, we get

$$\int_{-R}^{R} f(t) \left[\int_{-A}^{A} e^{iwt} g(w) \, dw \right] dt = \int_{-A}^{A} g(w) \left[\int_{-R}^{R} e^{iwt} f(t) \, dt \right] dw.$$

So,

$$\int_{-\infty}^{\infty} f(t) \left[\int_{-A}^{A} e^{iwt} g(w) \, dw \right] dt = \lim_{R \to \infty} \int_{-A}^{A} g(w) \left[\int_{-R}^{R} e^{iwt} f(t) \, dt \right] dw.$$

By Schwartz's inequality and Plancherel transform, we have

$$\left| \int_{-A}^{A} g(w) [\int_{|t|>R} e^{iwt} f(t) \, dt] dw \right|^2 \le \int_{-A}^{A} |g(w)|^2 \, dw \, 2\pi \int_{|t|>R} |f(t)|^2 \, dt,$$

and the right-hand side tends to zero. Hence

$$\lim_{R \to \infty} \int_{-A}^{A} g(w) \left[\int_{-R}^{R} e^{iwt} f(t) \, dt \right] dw = \int_{-A}^{A} g(w) F(f, w) dw,$$

which proves the theorem. \blacktriangleleft

Theorem 8. Let $\varphi \in S_0$. Let $g(w) = F(\varphi, w)$ be the Fourier transform of φ . Let $\stackrel{\wedge}{g}(z)$ be the Cauchy representation of g, z = x + iy. Then

$$\hat{g}(z) = \begin{cases} \int_0^\infty \varphi(t) e^{itz} dt, & y > 0, \\ -\int_{-\infty}^0 \varphi(t) e^{itz} dt, & y < 0 \end{cases}$$

Proof. If $\varphi \in S_0$, while $S_0 \subset L_1$, then $\varphi, g \in L_1$, which is defined as

$$\hat{g}(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{g(w)}{w - z} dw$$

exists for $y \neq 0$. We have

$$\frac{1}{2\pi i(w-z)} = \begin{cases} F^{-1}(H(t)e^{itz},w), & y > 0, \\ -F^{-1}(H(-t)e^{itz},w), & y < 0. \end{cases}$$

Using Parseval's formula and the fact that $\varphi \in L_1$ and $H(t)e^{itz} \in L_1$, we get

$$\hat{g}(z) = \left\{ \begin{array}{ll} \int_{0}^{\infty} \varphi(t) e^{itz} dt, & y > 0, \\ \\ -\int_{-\infty}^{0} \varphi(t) e^{itz} dt, & y < 0 \, . \end{array} \right.$$

◀

References

- H. Bremermann, Raspredelenija, kompleksnye peremennye i preobrazovanija Fur'e, Perevod s anglijskogo VP Pavlova i BM Stepanova. Pod red. VS Vladimirova, Izdat. Mir", 1968.
- [2] E.J. Beltrami, M.R. Wohlers, Distributions and the boundary values of analytic functions, Academic Press, New York, 1966.
- [3] R. Carmichael, D. Mitrovic, *Distributions and analytic functions*, New York, 1989.
- [4] L. Jantcher, Distributionen, Walter de Gruyter, Berlin, New York, 1971.
- [5] N. Reckoski, One proof for the analytic representation of distributions, Matematicki Bilten, 28, 2004, 19-30.

- [6] D. Rakic, Malotalasna transformacija u prostorima distribucija i ultradistribucija i teoreme Abelovog i Tauberovog tipa [PhD dissertation]. Novisad: Prirodno matematicki fakultet, 2010.
- [7] E. Iseni, S. Rexhepi, B. Bedzeti, Jump of distribution of D L2 through the analytic representation, IJMSEA, 12(II), 2018, 23–27.
- [8] E. Iseni, S. Rexhepi, B. Shaini, S. Kera, Some results on the analytic representation including the convolution in the L_p spaces, J. Math. Comput. Sci., **10(6)**, 2020, 2493-2502.

Egzona Iseni Mother Teresa University, Department of Mathematics, Skopje, North Macedonia E-mail:egzona.iseni@unt.edu.mk

Bedrije Bedjeti University of Tetovo, Department of Mathematics, Tetovo, North Macedonia E-mail:bedrije.bexheti@unite.edu.mk

Vesna Manova Erakovikj Ss. Cyril and Methodius University, Department of Mathematics, Skopje, North Macedonia E-mail:vesname@pmf.ukim.mk

Shpetim Rexhepi Mother Teresa University, Department of Mathematics, Skopje, North Macedonia E-mail:shpetim.rexhepi@unt.edu.mk

Received 02 March 2023 Accepted 03 May 2023