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Integration of the Loaded Sine-Gordon Equation
by the Inverse Scattering Problem Method

G.U. Urazboev, I.I. Baltaeva∗, A.T. Baimankulov

Abstract. In this paper, we consider the Cauchy-Goursat problem for a loaded sine-
Gordon equation. The main results of the work are the theorem on the uniqueness of
the solution of the problem under consideration and the theorem on the evolution of the
scattering data of the Dirac operator whose potential is related to the solution of the
loaded sine-Gordon equation. The equalities obtained in the scattering data evolution
theorem make it possible to apply the method of inverse scattering problem to solve the
considered problem.
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1. Introduction

Nonlinear evolution equations represent important physical applications. There-
fore, it is always interesting for researchers to find soliton solutions of these equa-
tions [1, 2, 3] using direct and inverse methods. The sine-Gordon Equation

uxx + utt = sinu, u = u(x, t), x ∈ R, t ≥ 0,

is a non-linear partial differential equation that appears in differential geometry as
an embedding equation for the Lobachevsky plane in three-dimensional Euclidean
space. It also has applications in the study of superconductivity and Josephson
effects [4].

Ablowitz, Kaup, Newell, and Segur [5] showed that the Cauchy problem for
the sine-Gordon equation in light-cone coordinates

uxt = sinu, u = u(x, t), x ∈ R, t ≥ 0,
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is integrable and can be solved by the inverse scattering method. The integrability
of the sine-Gordon equation was also studied by V.E. Zakharov, L.A. Tahtadjan,
L.D. Faddeev [6]. The work [7] considers the dynamics of a sine-Gordon breather
under the action of defects in condensed media, which is described by the per-
turbed sine-Gordon equation.

In this paper, we consider the Cauchy problem for the following loaded sine-
Gordon equation:

∂2u

∂x∂t
= sinu+ γ(t)ux(0, t)uxx, u = u(x, t), x ∈ R, t ≥ 0, (1)

u(x, 0) = u0(x), x ∈ R, (2)

where γ(t) is a given bounded, continuous function, and the initial function
u0(x) (−∞ < x < ∞) has the following properties:

1) u0(x) ≡ 0(mod 2π) as |x| → ∞;
∫∞
−∞ ((1 + |x|) |u′0(x)|+ |u′′0(x)|) dx <∞;

2) The operator L(0) = i

(
d
dx

u′0
2

u′0
2 − d

dx

)
has exactly N simple eigenvalues

ξ1(0), ξ2(0), ..., ξN (0) lying in the upper half-plane of the complex plane without
spectral singularities.

Equation (1) belongs to the class of so-called loaded equations [8, 9, 10].

The solution u(x, t) to problem (1)-(2) is sought in the class of functions that
have sufficient smoothness and rather quickly tend to their limits as x→ ±∞:

u(x, t) ≡ 0(mod 2π) as |x| → ∞;

∫ ∞
−∞

((1 + |x|) |ux(x, t)|+ |uxx(x, t)|) dx <∞.

(3)

2. Uniqueness of the solution

In this section, we will use the method of [11].

Theorem 1. If problem (1)-(3) has a solution, then it is unique.

Proof. Let u(x, t), v(x, t) be different solutions of (1)-(3). Denoting w(x, t) =
uxx − vxx, we have

wt = 1
2 [(cos u− cos v) (u+ v)x + (cos u+ cos v) (u− v)x] +

+
1

2
γ(t) [(ux(0, t)− vx(0, t)) (u+ v)xxx + (ux(0, t) + vx(0, t))wx] .
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Multiplying this equality by w(x, t) and integrating over x on the interval (−∞,∞),
we obtain

1

2

d

dt

∫ ∞
−∞

w2dx = −
∫ ∞
−∞

sin
u+ v

2
sin

u− v
2

(u+ v)xwdx+

+
1

2

∫ ∞
−∞

(cos u+ cos v) (u− v)xwdx+

+
1

2
γ(t)

∫ ∞
−∞

(ux(0, t)− vx(0, t)) (u+ v)xxxwdx+

+
1

4
γ(t) (ux(0, t) + vx(0, t))

∫ ∞
−∞

(w2)xdx.

Denoting max |(u+ v)x| by k , max |cos u+ cos v| by l, max |(u+ v)xxx| by m
and using the decreasing of w(x, t) as x→ ±∞, we have

1

2

d

dt

∫ ∞
−∞

w2dx ≤ k

2

∫ ∞
−∞
|u− v|wdx+

l

2

∫ ∞
−∞

(u− v)xwdx+

+
γ(t)

2
m max |(u− v)x|

∫ ∞
−∞

wdx.

Using the Cauchy-Schwartz inequality, we get:

1

2

d

dt

∫ ∞
−∞

w2dx ≤ k

√∫ ∞
−∞

(u− v)2dx

√∫ ∞
−∞

w2dx+

+l

√∫ ∞
−∞

((u− v)x)2dx

√∫ ∞
−∞

w2dx+

+m γ(t) max |(u− v)x|

√∫ ∞
−∞

w2dx.

According to [12], there are constants k1, l1, m1 > 0 such that√∫ ∞
−∞

(u− v)2dx ≤ k1

√∫ ∞
−∞

((u− v)x)2dx ,

√∫ ∞
−∞

((u− v)x)2dx ≤ l1

√∫ ∞
−∞

((u− v)xx)2dx,
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max |(u− v)x| ≤ m1

√∫ ∞
−∞

((u− v)xx)2dx.

So,

1

2

d

dt

∫ ∞
−∞

w2dx ≤ k k1 l1
∫ ∞
−∞

w2dx+ l l1

∫ ∞
−∞

w2dx+mm1 γ(t)

∫ ∞
−∞

w2dx.

Denoting
∫∞
−∞w

2dx by E(t) and setting k k1l1+ l l1+mm1 γ(t) = c(t), we obtain
the inequality

dE(t)

dt
≤ c(t)E(t).

Consequently,

E(t) ≤ E(0) exp

(∫ t

0
c(s) ds

)
.

Since E(0) = 0, from the last inequality it follows E(t) = 0, i.e. w(x, t) = uxx −
vxx = 0. Using conditions (2) and (3) we have ux = vx, therefore u(x, t) = v(x, t).

Theorem 1 is proved. J

3. Scattering problem

In this section, the function u(x, t) does not depend on t. Consider the system
of Dirac equations in the form{

ν1x + iξν1x = u′(x)
2 ν2,

ν2x − iξν2 = u′(x)
2 ν1

(4)

on the entire axis −∞ < x <∞, with a potential u(x) that satisfies the condition

u(x) ≡ 0(mod 2π) at |x| → ∞;∫∞
−∞((1 + |x|) |u′(x)|)dx <∞. (5)

Let us state some important facts concerning the direct and inverse scattering
problems for (4)-(5).

Under condition (5), the system of equations (4) has a Jost solutions with the
following asymptotics:

ϕ ∼
(

1
0

)
e−iξx

ϕ ∼
(

0
−1

)
eiξx

 atx→ −∞ (6)
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ψ ∼
(

0
1

)
eiξx

ψ ∼
(

1
0

)
e−iξx

 atx→ ∞ (7)

(Note that ϕ̄ is not a complex conjugate of ϕ).
For real ξ, the pairs of vector functions {ϕ(x, ξ), ϕ̄(x, ξ)} and

{
ψ(x, ξ), ψ̄(x, ξ)

}
are the pairs of linearly independent solutions for the system of equations (4).
Therefore, {

ϕ = a(ξ)ψ̄ + b(ξ)ψ,
ϕ̄ = −ā(ξ)ψ + b̄(ξ)ψ̄.

(8)

It is easy to see that the following equality is true:

a(ξ) = W {ϕ,ψ} ≡ ϕ1ψ2 − ϕ2ψ1,

Moreover, for real ξ,

a(ξ)ā(ξ) + b(ξ)b̄(ξ) = 1. (9)

The function a(ξ) admits an analytic continuation to the upper half-plane Im ξ >
0. For |ξ| → ∞, Imξ ≥ 0, the function a(ξ) has an asymptotics a(ξ) =

1 + O
(

1
|ξ|

)
. A function a(ξ) can have only a finite number of zeros ξk, k =

1, 2, ..., N in the half-plane Im ξ > 0. Zeros ξk of the function a(ξ) correspond

to the eigenvalues of the operator L = i

(
d
dx

u′

2
u′

2 − d
dx

)
in the upper half plane.

Note that the operator L can have multiple eigenvalues. We assume that the
operator L has no spectral singularities and all its eigenvalues are simple, so that

ϕ(x, ξk) = Ckψ(x, ξk) , k = 1, 2, ..., N.

The requirement that the operator L has no spectral singularities means that
the functions a(ξ) and ā(ξ) have no real zeros. The class of such operators is
not empty. In particular, it contains operators with reflectionless potentials, i.e.,
b(ξ) = 0, because, in this case, according to (9), a(ξ)ā(ξ) = 1.

The following integral representation holds for the vector function ψ:

ψ =

(
0
1

)
eiξ x +

∫ ∞
x

K (x, s) eiξ sds, (10)

where

K (x, s) =

(
K1 (x, s)
K2 (x, s)

)
.
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In (10), the kernel K (x, s) does not depend on ξ and is related to u(x) by
means of the equality

u′(x) = 4K1 (x, x) . (11)

The component of this kernel K1(x, y) in representation (11), as y > x is a
solution of the Gelfand-Levitan-Marchenko integral equation

K1(x, y)− F (x+ y) +

∫ ∞
x

∫ ∞
x

K1(x, z)F (z + s)F (s+ y)dsdz = 0,

where

F (x) =
1

2π

∫ ∞
−∞

b(ξ)

a(ξ)
eiξxdξ − i

N∑
j=1

Cje
iξjx.

Now the potential u(x) is determined from the equality (11).

The set
{
r+ (ξ) ≡ b(ξ)

a(ξ) , ξk, Ck, k = 1, 2, ..., N
}

is called scattering data for

the system of equations (4).
Note that the vector functions

hn (x) =

d
dξ (ϕ− Cnψ)

∣∣∣∣ ξ = ξn

ȧ (ξn)
, n = 1, 2, ..., N (12)

are the solutions to the equation Lhn = ξnhn. According to the equality a(ξ) =
W {ϕ,ψ}, we obtain the following asymptotics:

ψ∼a(ξ)

(
0
1

)
eiξx as x→ −∞,

ϕ∼a(ξ)

(
1
0

)
e−iξx as x→∞,

which are valid for Im ξ > 0. It follows from these estimates and the equality
(12) that

hn ∼ −Cn
(

0
1

)
eiξnx as x→ −∞,

hn ∼
(

1
0

)
e−iξnx as x→∞.

(13)

In particular,

W {ϕn, hn} ≡ ϕn1hn2 − ϕn2hn1 = −Cn,

where
ϕn ≡ ϕ (x, ξn) , n = 1, 2, ..., N.
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4. Evolution of scattering data

In this section, we consider the equation

uxt = sinu+G, (14)

where G = G(x, t) is a sufficiently smooth function that, for any nonnegative
value of t, satisfies the condition

G(x, t) = o(1) as x→ ±∞.

Equation (14) is considered under the initial condition (2).
The following theorem is true [13].

Theorem 2. If the potential u (x, t) is a solution to equation (14) in the class
of functions (3), then the scattering data of the system of equations (4) with the
potential u (x, t) depend on t as follows:

∂r+

∂t
= − i

2ξ
r+ +

1

2a2

∫ ∞
−∞

(
Gϕ2

2 +Gϕ2
1

)
dx, (Imξ = 0) ,

dCn
dt

=

(
− i

2ξn
+

∫ ∞
−∞

G

2
(hn2ψn2 + hn1ψn1) dx

)
Cn,

dξn
dt

=
i
∫∞
−∞

(
Gϕ2

n2 +Gϕ2
n1

)
dx

4
∫∞
−∞ ϕn1ϕn2dx

, n = 1, 2, ..., N.

Let us apply the result of Theorem 2 to equation (1) assuming

G(x, t) = γ(t)ux(0, t)uxx,

∂r+

∂t
= − i

2ξ
r+ +

γ(t)ux(0, t)

2a2

∫ ∞
−∞

(
uxxϕ

2
2 + uxxϕ

2
1

)
dx, (Imξ = 0) .

Using the system of equations (4), expansion formulas (8), and asymptotic for-
mulas (6), we obtain ∫ ∞

−∞

(
uxxϕ

2
2 + uxxϕ

2
1

)
dx =

= lim
R→∞

[(
uxϕ

2
2 + uxϕ

2
1

)∣∣R
−R −

∫ R

−R
(uxϕ2ϕ2x + uxϕ1ϕ1x) dx

]
=

= lim
R→∞

∫ R

−R
[(−2ϕ1x − 2iξϕ1)ϕ2x + (2ϕ2x − 2iξϕ2)ϕ1x] dx =
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= 4iξ lim
R→∞

(ϕ1ϕ2)
∣∣R−R = 4iξa(ξ)b(ξ).

Consequently,

∂r+

∂t
= − i

2ξ
r+ + 2iξγ(t)ux(0, t)r+, (Imξ = 0) . (15)

From equalities (4), (6) it follows∫ ∞
−∞

uxx
(
ϕ2
n2 + ϕ2

n1

)
dx =

= lim
R→∞

[
ux
(
ϕ2
n2 + ϕ2

n1

) ∣∣R−R − 2

∫ R

−R
(uxϕn2(ϕn2)x + uxϕn1(ϕn1)x)dx

]
=

= −4 lim
R→∞

∫ R

−R
[(−(ϕn1)x − iξnϕn1)(ϕn2)x + ((ϕn2)x − iξnϕn2)(ϕn1)x)] dx =

= 4iξn lim
R→∞

∫ R

−R
(ϕn1ϕn2)x dx = 0,

and consequently,
dξn
dt

= 0, n = 1, 2, ..., N. (16)

So,

dCn
dt

=

(
− i

2ξn
+ γ(t)ux(0, t)

∫ ∞
−∞

uxx
2

(hn2ψn2 + hn1ψn1) dx

)
Cn.

Hence, from the system of equations (4), asymptotic formulas (13) and (6) we
obtain ∫ ∞

−∞

uxx
2

(hn2ψn2 + hn1ψn1) dx =

= lim
R→∞

[
ux
2

(hn2ψn2 + hn1ψn1)
∣∣R−R − ∫ R

−R

ux
2

(hn2ψn2 + hn1ψn1)xdx

]
=

= iξn lim
R→∞

[
(hn2ψn1)

∣∣R−R + (hn1ψn2)
∣∣R−R ] = 2iξn,

i.e.
dCn
dt

=

(
− i

2ξn
+ 2iξnγ(t)ux(0, t)

)
Cn, n = 1, 2, ..., N. (17)

We combine (15), (16) and (17) into the following theorem.
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Theorem 3. If the potential u (x, t) is a solution to problem (1)-(2) in the class
of functions (3), then the scattering data of the system of equations (4) with the
potential u (x, t) depend on t as follows:

∂r+

∂t
= − i

2ξn
r+ + 2iξnγ(t)ux(0, t)r+, (Imξ = 0),

dCn
dt =

(
− i

2ξn
+ 2iξnγ(t)ux(0, t)

)
Cn,

dξn
dt

= 0, n = 1, 2, ..., N.

The obtained equalities completely determine the evolution of the scattering
data, which makes it possible to apply the method of inverse scattering problem
to solve the problem (1)–(3).

Example 1. Consider the following problem{
∂2u
∂x∂t = sinu+ γ(t)ux(0, t)uxx,
u(x, 0) = 4arctg

(
e2x
)
,

where γ(t) =

√
1+ t2

4 (ch t
2
−1)

16 . For the operator L(0) = i

(
d
dx

u′0
2

u′0
2 − d

dx

)
, the scat-

tering data have the form

N = 1, r+(ξ, 0) = 0, ξ1(0) = i, C1(0) = 2i.

According to Theorem 2, we have

r+(ξ, t) = 0, ξ1(t) = i, C1(0) = 2i exp (δ(t)) ,

where δ(t) = −1
2 t−2

∫ t
0 γ(τ)ux(0, τ)dτ . Applying the inverse problem method, we

obtain

u(x, t) = 4arctg

(
exp(2x− 1

2
t− 2

∫ t

0
γ(τ)ux(0, τ)dτ)

)
.

Differentiating the last equality, we have

ux(x, t) = 4arctg

(
exp(2x− 1

2
t− 2

∫ t

0
γ(τ)ux(0, τ)dτ)

)
.

Assuming x = 0, for the function f(t) = 2
∫ t
0 γ(τ)ux(0, τ)dτ we obtain the fol-

lowing Cauchy problem: {
f ′(t)
γ(t) = 8

ch ( t
2
+f(t))

,

f(0) = 0.
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and solving this problem we find f(t) = sh t− t
2 . Then,

u(x, t) = 4arctg

(
exp(2x+ sh

t

2
)

)
. (18)

As it is known, the solution of the sine-Gordon equation for a given initial con-
dition has the form

u(x, t) = 4arctg

(
exp(2x+

t

2
)

)
. (19)

The difference between the solution of the sine-Gordon equation (19) and the
one of the loaded sine-Gordon equation (18) for a given initial condition is shown
in the following figure:
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Figure 1: The difference between the solution of the sine-Gordon and loaded sine-Gordon equation.
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