On the Weak Solvability of Dirichlet Problem for a Fractional Order Degenerate Elliptic Equation

F.I. Mamedov*, N.M. Mammadzada, S.M. Mammadli

Abstract

In this paper, we study the weak solvability of nonhomogeneous Dirichlet problem for a degenerate fractional order elliptic equation: $(-\Delta)^{\frac{\alpha}{2}}\left(\omega(x)(-\Delta)^{\frac{\alpha}{2}} u\right)=$ $f(x), \quad x \in \Omega \subset R^{n},\left.\quad \alpha \in(0 ; 1) u\right|_{R^{n} \backslash \Omega}=\varphi(x)$. For that a sufficient condition is found on the data of problem such as Ω, α, n, the weight function $\omega: \mathbb{R}^{n} \rightarrow[0, \infty)$ and the functions f, φ. Weighted fractional order Sobolev-Poincare type inequality and Lax-Milgram principle are used.

Key Words and Phrases: fractional Laplacian, Lax-Milgram principle, fractional order Sobolev spaces, Sobolev-Poincare inequality, weight, degenerate elliptic equations.

2010 Mathematics Subject Classifications: 39A06, 39A14, 39A70, 26D10, 47G20

1. Introduction

This paper deals with the weak solvability of Dirichlet problem for the degenerate fractional order elliptic equation

$$
\begin{gather*}
(-\Delta)^{\frac{\alpha}{2}}\left(\omega(x)(-\Delta)^{\frac{\alpha}{2}} u\right)=f(x), \quad x \in \Omega \subset R^{n}, \quad \alpha \in(0 ; 1) \tag{1}\\
\left.u\right|_{R^{n} \backslash \Omega}=\varphi(x), \tag{2}
\end{gather*}
$$

where Δ is Laplace's operator, and $(-\Delta)^{\alpha / 2}$ is a Laplace operator of fractional order $\alpha / 2$ in the sense below (see, e.g. [16, Section 3]):

$$
(-\Delta)^{\alpha / 2} u(x)=C(n, \alpha) \lim _{\varepsilon \rightarrow+0} \int_{\mathbb{R}^{n} \backslash B_{\varepsilon}(x)} \frac{u(x)-u(y)}{|x-y|^{n+\alpha}} d y, \quad x \in \mathbb{R}^{n}
$$

*Corresponding author.
http://www.azjm.org 69 (C) 2010 AZJM All rights reserved.
with

$$
C(n, \alpha)=\pi^{-(\alpha+n / 2)} \frac{\Gamma((\alpha+n) / 2)}{\Gamma(-\alpha / 2)}, \alpha \in(0,1)
$$

which is a nonlocal operator, the kind of well-known Laplace operator

$$
-\Delta u(x)=C(n) \lim _{\varepsilon \rightarrow+0} \frac{1}{\varepsilon^{n+2}} \int_{B_{\varepsilon}(x)}(u(x)-u(y)) d y, \quad x \in \mathbb{R}^{n}
$$

with

$$
C(n)=\pi^{-n / 2} \Gamma\left(\frac{n}{2}\right) n(n+1)
$$

In case of no degeneration $(\omega \equiv$ const $)$, the problem (1)-(2) has been well-studied (see, e.g., $[4,7,17,20]$). For a survey of the fractional Sobolev spaces, the corresponding nonlocal equations and their applications we refer to $[8,15,16]$.

The fractional Sobolev spaces have been a classical topic, and some important books ($[9,12,19]$) treat this topic in detail; the wide bibliography is given in [16]. For applications see, e.g., [6]. Though the method used here to proof the existence and uniqueness of the solution to the problem (1)-(2), that is the LaxMilgram principle, is not distinguished by its originality, its use is fraught with many non-trivial problems. This is caused by the extension and trace problems on weighted fractional Sobolev spaces (see [3]), approximation problems with smooth functions (see [5]). This paper aims to draw attention to these actual problems.

2. Weighted Sobolev spaces of fractional order

Let $1 \leq p<\infty$ and $\alpha \in(0,1)$. Let $\Omega \subset \mathbb{R}^{n}$ be an open domain. Let $g(x) \in \operatorname{Lip}(\bar{\Omega})$ be a Lipschitz continuous function. Denote by $W_{p, \omega}^{\alpha}(\Omega)$ a closure of $\operatorname{Lip}(\bar{\Omega})$ with respect to the norm

$$
\begin{equation*}
\|g\|_{W_{p, \omega}^{\alpha}(\Omega)}=\|g\|_{L^{p}(\Omega)}+\left(\iint_{\Omega \times \Omega} \frac{|g(x)-g(y)|^{p}}{|x-y|^{n+p \alpha}} \omega(x) d x d y\right)^{1 / p} \tag{3}
\end{equation*}
$$

Also, we denote by $\dot{W}_{p, \omega}^{\alpha}(\Omega)$ a Sobolev space obtained from the closure of $\overline{\operatorname{Lip}_{0}(\Omega)}$ with respect to the norm (3).

Denote by $\hat{W}_{p, \omega}^{\alpha}(\Omega)$ a closure with respect to the norm (3) of the functions with finite norm (3). Evidently, $W_{p, \omega}^{\alpha}(\Omega) \subset \hat{W}_{p, \omega}^{\alpha}(\Omega)$.

On the relation $W_{p, \omega}^{\alpha}(\Omega)=\hat{W}_{p, \omega}^{\alpha}(\Omega)$ for these spaces without weights $(\omega \equiv$ const), i.e. possibility of smooth approximation on the Lipschitz domains, see [2], and [5] for other domains in terms of Assouad dimension.

For these spaces, their trace analogues and interpolation inequalities in nonweight cases $(\omega \equiv$ const) we refer to $[10,12,18,20,21]$ (see also, $[1,13,14]$ for some weight cases).

Denote the trace space of $W_{p, \omega}^{\alpha}(\Omega)$ by $7 r\left(W_{p, \omega}^{\alpha}(\Omega)\right)$ (probably it would be better to use "extension" instead of "trace"). This trace space consists of functions $\varphi: \mathbb{R}^{n} \backslash \Omega \rightarrow \mathbb{R}$ such that there exists a bounded extension operator $T: \varphi \rightarrow \Phi$ from $W_{p, \omega}^{\alpha}\left(\mathbb{R}^{n} \backslash \Omega\right)$ to $W_{p, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$ such that $\Phi=\varphi$ on $\mathbb{R}^{n} \backslash \Omega$.

Also, we denote by $W_{p, \omega}^{\alpha-1 / p}(\partial \Omega)$ a closure of $\operatorname{Lip}(\overline{\partial \Omega})$ with respect to the norm

$$
\begin{gathered}
\|u\|_{W_{p, \omega}^{\alpha-\frac{1}{p}}(\partial \Omega)}:= \\
\left(\int_{\partial \Omega}|u(x)|^{p} d s_{x}\right)^{1 / p}+\left(\iint_{\partial \Omega \times \partial \Omega} \frac{[\varphi(x)-\varphi(y)]^{p}}{|x-y|^{n-1+p(\alpha-1 / p)}} \omega(x) d s_{x} d s_{y}\right)^{1 / p}
\end{gathered}
$$

where $d s_{x}$ is an element of $(n-1)$-dimensional Hausdorff measure on the surface $\partial \Omega$. Note that $\operatorname{Tr}\left(W_{p, \omega}^{\alpha}(\Omega)\right) \equiv W_{p, \omega}^{\alpha-1 / p}(\partial \Omega)$ in the classical nonfractional case (i.e. for the positive integer α and $\omega \equiv$ const). We are not aware of the related results concerning the case of fractional α, e.g. $\frac{1}{p}<\alpha<1, p>1$, not to mention weight cases. Also we do not know if there exists an extension $G \in W_{p, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$ of the function $g \in W_{p, \omega}^{\alpha}(\Omega)$ to the whole space such that $g \rightarrow G$ is a bounded operator, and what condition on Ω is sufficient for that.

Conjecture 1. We conjecture that the equality $\operatorname{Tr}\left(W_{p, \omega}^{\alpha}(\Omega)\right) \equiv W_{p, \omega}^{\alpha}\left(\mathbb{R}^{n} \backslash \Omega\right)$ holds for the Lipshitsz domain Ω in the cases of $p>1, \frac{1}{p}<\alpha<1$ if the weight function ω satisfies some Muckenhoupt type conditions.

Now let us consider the problem (1)-(2) for $p=2,1 / 2<\alpha<1$. We introduce the substitution $z=u-\Phi$ in order to solve the problem (1)-(2), where Φ is an extension of the given function $\varphi: \mathbb{R}^{n} \backslash \Omega \rightarrow \mathbb{R}$ as $\Phi \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$, i.e. there is a bounded operator

$$
\begin{equation*}
T: \varphi \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n} \backslash \Omega\right) \rightarrow \Phi \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n}\right) \tag{4}
\end{equation*}
$$

such that $\Phi \equiv \varphi$ on $\mathbb{R}^{n} \backslash \Omega$ and $\Phi=\mathrm{T} \varphi \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$. In our notations this is expressed as $\varphi \in \operatorname{Tr}\left(W_{p, \omega}^{\alpha}(\Omega)\right)$.

Problem 1. Find the necessary and sufficient conditions on domain Ω, the fractional parameter $0<\alpha<1$, on $p>1$ and the weight function ω which provide the existence of the extension (4) and its inverse.

Problem 2. We are also not aware of sufficient (necessary) conditions which provide the existence of the extension (4) or its inverse in weighted cases $\omega \neq$ const and $p \neq 2$.

Consider the functions

$$
f \in L^{2}(\Omega) \text { and } \varphi \in \neg_{r}\left(W_{2, \omega}^{\alpha}(\Omega)\right)
$$

Definition 1. By the solution $u(x)$ of the problem (1)-(2), we mean a function $u \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$ such that $u-\Phi \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$ and

$$
\begin{equation*}
\iint_{\Omega \times \Omega} \frac{[u(x)-u(y)][\mathrm{g}(x)-\mathrm{g}(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y=\int_{\Omega} f(x) g(x) d x \tag{5}
\end{equation*}
$$

for all test functions $\mathrm{g} \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$.
In other words, we are going to solve the problem (1)-(2) for $\varphi \in \operatorname{Tr}\left(W_{2, \omega}^{\alpha}(\Omega)\right)$ and $f(x) \in L_{2}(\Omega)$, which means that there exists a bounded extension of φ : $\mathbb{R}^{n} \backslash \Omega \rightarrow \mathbb{R}$ from $\varphi \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n} \backslash \Omega\right)$ to $\Phi \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$ such that $\Phi \equiv \varphi$ on $\mathbb{R}^{n} \backslash \Omega$. Applying the substitution $z=u-\Phi$, we get the relation

$$
\begin{equation*}
(-\Delta)^{\alpha / 2}\left(\omega(x)(-\Delta)^{\alpha / 2} z\right)=f(x)+F, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
F=(-\Delta)^{\frac{\alpha}{2}}\left(\omega(x)(-\Delta)^{\frac{\alpha}{2}} \Phi\right) \quad \text { and }\left.z\right|_{R^{n} \backslash \Omega}=0 \tag{7}
\end{equation*}
$$

Now, the solution of the problem (6)-(7) is a function $z \in \dot{W}_{2,}^{\alpha}{ }_{\omega}(\Omega)$ satisfying for $\forall g \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$ the integral identity

$$
\begin{gather*}
\iint_{\Omega \times \Omega} \frac{[z(x)-z(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y=\int_{\Omega} f(x) g(x) d x- \\
\quad-\iint_{\Omega \times \Omega} \frac{[\Phi(x)-\Phi(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y . \tag{8}
\end{gather*}
$$

To find a function $z(x)$ satisfying (8) for all $g \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$, we apply the LaxMilgram principle [6]. For that, let us consider the bilinear form

$$
\begin{equation*}
B(z, g)=\iint_{\Omega \times \Omega} \frac{[z(x)-z(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y \tag{9}
\end{equation*}
$$

and show that it is bounded and coercive on a Hilbert space. For that, we use the space $\dot{W}_{2, \omega}^{\alpha}(\Omega)$ obtained from the closure of $\operatorname{Lip}_{0}(\Omega)$ with respect to the norm of space $\dot{W}_{2, \omega}^{\alpha}(\Omega)$. Define the inner product space on $\operatorname{Lip}_{0}(\Omega)$ as follows:

$$
\begin{equation*}
(z, g)_{H}=\iint_{\Omega \times \Omega} \frac{[z(x)-z(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y+\int_{\Omega} z(x) g(x) d x \tag{10}
\end{equation*}
$$

Evidently, (10) satisfies the properties of inner product. Hence it is a norm. Denote by H its closure with respect to the norm $\|z\|_{H}=\left((z, z)_{H}\right)^{1 / 2}$. The space H is a Hilbert space. We will show that the bilinear form $B(z, g)$ acts boundedly and coercively in H. Let us note that $H=\dot{W}_{2, \omega}^{\alpha}(\Omega)$, i.e.

$$
\|g\|_{H}=\|g\|_{L^{2}(\Omega)}+\left(\iint_{\Omega \times \Omega} \frac{|g(x)-g(y)|^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y\right)^{1 / 2}
$$

We need the following inequality from $[11,12]$ (see also [14]):

$$
\begin{equation*}
\|g\|_{L^{2}(\Omega)}^{2} \leq c\left(\iint_{\Omega \times \Omega} \frac{[g(x)-g(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y\right)^{1 / 2} \tag{11}
\end{equation*}
$$

where $g \in H$, the weight function $\omega: \mathbb{R}^{n} \rightarrow(0, \infty)$ is measurable, takes finite positive values a.e. and is such that for all cubes $Q \subset \mathbb{R}^{n}$ centered on Ω with the edge less than d_{Q} (diameter of cube) the following inequality holds:

$$
\begin{equation*}
\int_{Q} \omega^{-1}(x) d x \leq c|Q|^{\frac{n-2 \alpha}{n}} \tag{12}
\end{equation*}
$$

where $0<\alpha<\min \{n / 2,1\}$. Hence it easily follows that the same inequality holds for all functions $g \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$, too. Note that more general result was proved in the cited works: for the exponents $1 \leq p \leq q<\infty, \quad \alpha \in(0,1)$ the inequality

$$
\begin{equation*}
\|g\|_{L_{q, v}(\Omega)} \leq C_{0} A\left(\iint_{\Omega \times \Omega} \frac{[g(x)-g(y)]^{p}}{|x-y|^{n+p \alpha}} K(x, y) d x d y\right)^{1 / p} \tag{13}
\end{equation*}
$$

was proved for all $g \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$ under the sufficient condition on the kernel function:

$$
\begin{equation*}
\frac{1}{|Q|}\left[\iint_{Q} K(x y)^{1-p^{\prime}} v(y)^{p^{\prime}} d x d y\right]^{1 / p^{\prime}} \leq A\left[\int_{Q} v(x) d x\right]^{1 / q^{\prime}} \tag{14}
\end{equation*}
$$

for all cubes $Q \subset \mathbb{R}^{n}$ centered on Ω with the edge less than d_{Q}.
Consider the kernel function $K(x, y)=\omega(x) /|x-y|^{n+p \alpha}$ with $p=2, \quad q=2$.
Then

$$
\frac{1}{|Q|}\left[\iint_{Q \cap Q} \omega^{-1}(x)|x-y|^{n+2 \alpha} d x d y\right]^{1 / 2} \leq c|Q|^{1 / 2}
$$

Therefore, this condition becomes

$$
\iint_{Q \cap Q} \omega^{-1}(x)|x-y|^{n+2 \alpha} d x d y \leq c|Q|^{3}
$$

and hence

$$
\begin{equation*}
\omega^{-1}(Q) \leq c|Q|^{1-2 \alpha / n}, \tag{15}
\end{equation*}
$$

which yields the inequality with more specified constant:

$$
\begin{equation*}
\|u\|_{L_{2}(\Omega)} \leq C_{0}\left[\frac{\omega^{-1}\left(Q_{0}\right)}{\left|Q_{0}\right|^{1-\frac{2 \alpha}{n}}}\right]^{\frac{1}{2}}\left(\iint_{\Omega \times \Omega} \frac{[u(x)-u(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y\right)^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

for all functions $u \in \dot{W}_{2, ~}^{\alpha}(\Omega)$, where Q_{0} is a minimal cube such that $\Omega \subset Q_{0}$.
The boundedness of bilinear form follows from (16) using Hölder's inequality,

$$
\begin{gather*}
|B(z, v)|=\left|\iint_{\Omega \times \Omega} \frac{[z(x)-z(y)][v(x)-v(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y\right| \\
\leq\left[\iint_{\Omega \times \Omega} \frac{[z(x)-z(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y\right]^{\frac{1}{2}} \cdot\left[\iint_{\Omega \times \Omega} \frac{[v(x)-v(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y\right]^{\frac{1}{2}} \\
\leq\|z\|_{H}\|v\|_{H} . \tag{17}
\end{gather*}
$$

The coercivity of bilinear form $B(z, g)$ follows from (16) and the inequality:

$$
\begin{gathered}
B(z, z)=\iint_{\Omega \times \Omega} \frac{[z(x)-z(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y \leq \\
\leq \frac{1}{2} \iint_{\Omega \times \Omega} \frac{[z(x)-z(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y+\frac{1}{2} \iint_{\Omega \times \Omega} \frac{[z(x)-z(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y .
\end{gathered}
$$

Now, using the inequality (16) we have

$$
\begin{equation*}
B(z, z) \geq \frac{1}{2} \iint_{\Omega \times \Omega} \frac{[z(x)-z(y)]^{2}}{|x-y|^{n+2 \alpha}} \omega(x) d x d y+\frac{1}{2 C}\|z\|_{L^{2}(\Omega)}^{2} \geq c_{1}\|z\|_{H}^{2}, \tag{18}
\end{equation*}
$$

where $c_{1}=\min \left\{\frac{1}{2}, \frac{1}{2 C}\right\}, C$ is from the inequality (16) and does not depend on $z(x)$.

We have to solve the problem

$$
\begin{equation*}
(-\Delta)^{\frac{\alpha}{2}}\left(\omega(x)(-\Delta)^{\frac{\alpha}{2}} z\right)=f(x)+F \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\left.z\right|_{R^{n} \backslash \Omega}=0 \tag{20}
\end{equation*}
$$

where F is defined by (7). Substituting (7) into (19), we obtain the relation

$$
\begin{gather*}
\iint_{\Omega \times \Omega} \frac{[z(x)-z(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y=\int_{\Omega} f(x) g(x) d x- \\
\quad-\iint_{\Omega \times \Omega} \frac{[\Phi(x)-\Phi(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y \tag{21}
\end{gather*}
$$

which is suitable for applying the Lax-Milgram principle.
Now, after proving that the bilinear form is bounded and coercive, it remains to show that the right-hand side of (21) is a bounded functional on H. To prove this, we use Holder's inequality to obtain

$$
\left|\int_{\Omega} f(x) g(x) d x\right| \leq\|f\|_{L^{2}(\Omega)} \times\|g\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|g\|_{H}
$$

and

$$
\left|\iint_{\Omega \times \Omega} \frac{[\Phi(x)-\Phi(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y\right| \leq\|\Phi\|_{H} \times\|g\|_{H}
$$

Therefore, the right-hand side of (21) is a bounded linear functional on H. Then, by the Lax-Milgram principle, there exists a unique solution $z \in H$ of the problem (19)-(20).

Therefore, assuming $f \in L_{2}(\Omega)$ and $\varphi \in \operatorname{Tr}\left(W_{2, \omega}^{\alpha}(\Omega)\right)$ (the class of functions $\varphi: \mathbb{R}^{n} \backslash \Omega \rightarrow \mathbb{R}$ for which there exists an extention to the function $\Phi \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$ such that $\Phi=\varphi$ on Ω), we see that the right-hand side of (8) is a bounded functional on H. Therefore, we can use the Lax-Milgram principle. Applying it, we get a unique function $z \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$ satisfying the identity (8). In other words, we get a solution of the problem (6)-(7).

Now, substituting the found function $z \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$ into (1)-(2) and using the presentation $u=z+\Phi$, we get

$$
\begin{gathered}
\iint_{\Omega \times \Omega} \frac{[u(x)-\Phi(x)-u(y)+\Phi(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y=\int_{\Omega} f(x) g(x) d x \\
-\iint_{\Omega \times \Omega} \frac{[\Phi(x)-\Phi(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y .
\end{gathered}
$$

After some simplifying, we arrive at the conclusion that there exists a unique $u \in W_{2, \omega}^{\alpha}\left(\mathbb{R}^{n}\right)$ such that $u-\Phi \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$ and

$$
\begin{equation*}
\iint_{\Omega \times \Omega} \frac{[u(x)-u(y)][g(x)-g(y)]}{|x-y|^{n+2 \alpha}} \omega(x) d x d y=\int_{\Omega} f(x) g(x) d x \tag{22}
\end{equation*}
$$

for all $g \in \dot{W}_{2, \omega}^{\alpha}(\Omega)$, i.e. $u(x)$ is a unique solution of the problem (1)-(2).
So we have proved the following main result of this work:
Theorem 1. Let $f \in L_{2}(\Omega), \varphi \in \operatorname{Tr}\left(W_{2, \omega}^{\alpha}(\Omega)\right), 0<\alpha<1, \quad p>1$, and the positive measurable function $\omega: \mathbb{R}^{n} \rightarrow(0, \infty)$ satisfy (15). Then, for any pair of functions (f, φ) there exists a unique weak solution $u \in W_{2, ~}^{\alpha}\left(\mathbb{R}^{n}\right)$, which solves the problem (1)-(2) in the sense of (5).

References

[1] M. Azouzi, L.Guedda Existence result for nonlocal boundary value problem of fractional order at resonance with p-Laplacian operator, Azerb. J. of Math, 13(1), 2023, 14-33.
[2] A.M. Caetano, Approximation by functions of compact support in Besov-Triebel-Lizorkin spaces on irregular domains, Studia Math, 142(1), 2000, 4763.
[3] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Dif. Equ, 32, 2007, 1245-1260.
[4] A. Cordoba, D. Cordoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, PNAS 100, 2003, 15316-15317.
[5] B. Dyda, M. Kijaczko On density of compactly supported smooth functions in fractional Sobolev spaces, Annali di Matem. Pura ed Appl., 201, 2022, 18551867.
[6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
[7] K.H. Karlsen, F. Petitta, S. Ulusoy, A duality approach to the fractional Laplacian with measure data, Publ. Mat., 55, 2011, 151-161.
[8] R. Lewandowsky, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Anal. 28(2), 1997, 393-417.
[9] N.S. Landkof, Foundations of Modern Potential Theory, Grundlehren Math. Wiss. (Fundamental Principles of Mathematical Sciences), Switzerland, Springer, 180, 1973.
[10] G. Leoni, A First Course in Sobolev Spaces, Grad. Stud. Math., Amer. Math. Soc., Providence, RI, 105, 2009.
[11] F.I. Mamedov, N.M. Mammadzada, L.E. Persson, A new fractional order Poincare's inequality with weights, Math. Ineq. Appl., 23(2), 2020, 611-624.
[12] F.I. Mamedov, On the multidimensional weighted Hardy inequalities of fractional order, Proc. Inst. Math. Mech. Acad. Sci. Azerb., 10(XVII), 1999, 102-114.
[13] F.I. Mamedov, V.A. Mamedova, On Sobolev-Poincare-Friedrichs type weight inequalities, Azerb. J. of Math., 12(2), 2022, 92-108.
[14] F.I. Mamedov, S.M. Mammadli, On the fractional order weighted Hardy inequality for monotone functions, Proc. Inst. Math. Mech. Azerb., 42(2), 2016, 257-264.
[15] V. Maz'ya, T. Shaposhnikova, Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Grundlehren Math. Wiss. (Fundamental Principles of Mathematical Sciences), 337, Springer-Verlag, Berlin, 2009.
[16] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Des Sci. Math., 136(5), 2012, 521-573.
[17] A. Niang, Fractional Elliptic Equations, African Institute for Mathematical Sciences (AIMS), Senegal, Master Thesis, 2014.
[18] T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl., Walter de Gruyter Co., Berlin, 3, 1996.
[19] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser., Princeton University Press, Princeton, NJ, 30, 1970.
[20] H. Triebel, Interpolation Theory, Fourier Analysis and Function Spaces, Teubner-Texte Math., Teubner, Leipzig, 1977.
[21] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital., Springer-Verlag, Berlin, Heidelberg, 3, 2007.

Farman I. Mamedov
Institute of Mathematics and Mechanics, The Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
E-mail: farman-m@mail.ru

Nazira M. Mammadzada
Oil Gas Scientific Research Project Institute, Socar, Baku, Azerbaijan
E-mail: nazire.m@mail.ru

Sayali M. Mammadli
Institute of Mathematics and Mechanics, The Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
E-mail: sayka-426@mail.ru
Received 17 April 2023
Accepted 15 June 2023

