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On the Weak Solvability of Dirichlet Problem for
a Fractional Order Degenerate Elliptic Equation

F.I. Mamedov*, N.M. Mammadzada, S.M. Mammadli

Abstract. In this paper, we study the weak solvability of nonhomogeneous Dirichlet

problem for a degenerate fractional order elliptic equation: (−∆)
α
2

(
ω(x)(−∆)

α
2 u
)
=

f(x), x ∈ Ω ⊂ Rn, α ∈ (0; 1) u|Rn\Ω = φ(x). For that a sufficient condition is
found on the data of problem such as Ω, α, n, the weight function ω : Rn → [0, ∞)
and the functions f, φ. Weighted fractional order Sobolev-Poincare type inequality and
Lax-Milgram principle are used.
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1. Introduction

This paper deals with the weak solvability of Dirichlet problem for the degen-
erate fractional order elliptic equation

(−∆)
α
2

(
ω (x) (−∆)

α
2 u
)
= f (x) , x ∈ Ω ⊂ Rn, α ∈ (0; 1) (1)

u|Rn\Ω = φ (x) , (2)

where ∆ is Laplace’s operator, and (−∆)α/2 is a Laplace operator of fractional
order α/2 in the sense below (see, e.g. [16, Section 3]):

(−∆)α/2u (x) = C(n, α) lim
ε→+0

∫
Rn\Bε(x)

u (x)− u(y)

|x− y|n+α dy, x ∈ Rn ,
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with

C (n, α) = π−(α+n/2)Γ((α+ n)/2)

Γ(−α/2)
, α ∈ (0, 1),

which is a nonlocal operator, the kind of well-known Laplace operator

−∆u (x) = C (n) lim
ε→+0

1

εn+2

∫
Bε(x)

(u (x)− u (y)) dy, x ∈ Rn ,

with
C (n) = π−n/2Γ

(n
2

)
n(n+ 1).

In case of no degeneration (ω ≡ const), the problem (1)-(2) has been well-studied
(see, e.g., [4, 7, 17, 20]). For a survey of the fractional Sobolev spaces, the
corresponding nonlocal equations and their applications we refer to [8, 15, 16].

The fractional Sobolev spaces have been a classical topic, and some important
books ([9, 12, 19]) treat this topic in detail; the wide bibliography is given in
[16]. For applications see, e.g., [6]. Though the method used here to proof the
existence and uniqueness of the solution to the problem (1)-(2), that is the Lax-
Milgram principle, is not distinguished by its originality, its use is fraught with
many non-trivial problems. This is caused by the extension and trace problems
on weighted fractional Sobolev spaces (see [3]), approximation problems with
smooth functions (see [5]). This paper aims to draw attention to these actual
problems.

2. Weighted Sobolev spaces of fractional order

Let 1 ≤ p < ∞ and α ∈ (0, 1). Let Ω ⊂ Rn be an open domain. Let
g (x) ∈ Lip

(
Ω
)
be a Lipschitz continuous function. Denote by Wα

p, ω (Ω) a

closure of Lip
(
Ω
)
with respect to the norm

∥g∥Wα
p,ω(Ω) = ∥g∥Lp(Ω) +

(∫∫
Ω×Ω

|g (x)− g (y)|p

|x− y|n+pα ω (x) dxdy

)1/p

. (3)

Also, we denote by Ẇα
p,ω (Ω) a Sobolev space obtained from the closure of

Lip0 (Ω) with respect to the norm (3).
Denote by Ŵα

p, ω (Ω) a closure with respect to the norm (3) of the functions

with finite norm (3). Evidently, Wα
p, ω (Ω) ⊂ Ŵα

p, ω (Ω).

On the relation Wα
p,ω (Ω)= Ŵα

p,ω (Ω) for these spaces without weights (ω ≡
const) , i.e. possibility of smooth approximation on the Lipschitz domains, see
[2], and [5] for other domains in terms of Assouad dimension.
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For these spaces, their trace analogues and interpolation inequalities in non-
weight cases (ω ≡ const) we refer to [10, 12, 18, 20, 21] (see also, [1, 13, 14] for
some weight cases).

Denote the trace space of Wα
p,ω (Ω) by ℸr

(
Wα

p,ω (Ω)
)
(probably it would

be better to use “extension” instead of “trace”). This trace space consists of
functions φ : Rn\Ω → R such that there exists a bounded extension operator
T : φ → Φ from Wα

p, ω (Rn\Ω) to Wα
p, ω (Rn) such that Φ = φ on Rn\Ω.

Also, we denote by W
α−1/p
p,ω (∂Ω) a closure of Lip (∂Ω) with respect to the

norm

∥u∥
W

α− 1
p

p,ω (∂Ω)
:=

(∫
∂Ω

|u(x)|pdsx
)1/p

+

(∫∫
∂Ω×∂Ω

[φ (x)− φ (y)]p

|x− y|n−1+p(α−1/p)
ω (x) dsxdsy

)1/p

,

where dsx is an element of (n− 1)−dimensional Hausdorff measure on the surface

∂Ω. Note that ℸr
(
Wα

p, ω (Ω)
)
≡ W

α−1/p
p, ω (∂Ω) in the classical nonfractional case

(i.e. for the positive integer α and ω ≡ const ). We are not aware of the related
results concerning the case of fractional α, e.g. 1

p < α < 1, p > 1, not to mention
weight cases. Also we do not know if there exists an extension G ∈ Wα

p, ω (Rn)
of the function g ∈ Wα

p, ω (Ω) to the whole space such that g → G is a bounded
operator, and what condition on Ω is sufficient for that.

Conjecture 1. We conjecture that the equality ℸr
(
Wα

p, ω (Ω)
)
≡ Wα

p, ω (Rn \Ω)
holds for the Lipshitsz domain Ω in the cases of p > 1, 1

p < α < 1 if the weight
function ω satisfies some Muckenhoupt type conditions.

Now let us consider the problem (1)-(2) for p = 2, 1/2 < α < 1. We introduce
the substitution z=u − Φ in order to solve the problem (1)-(2), where Φ is an
extension of the given function φ : Rn\Ω →R as Φ ∈ Wα

2, ω (Rn), i.e. there is a
bounded operator

T : φ ∈ Wα
2, ω (Rn\Ω)→Φ ∈ Wα

2, ω (Rn) (4)

such that Φ≡φ on Rn\Ω and Φ= Tφ ∈ Wα
2, ω (Rn). In our notations this is

expressed as φ ∈ ℸr
(
Wα

p, ω (Ω)
)
.

Problem 1. Find the necessary and sufficient conditions on domain Ω, the frac-
tional parameter 0 < α < 1, on p > 1 and the weight function ω which provide
the existence of the extension (4) and its inverse.
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Problem 2. We are also not aware of sufficient (necessary) conditions which
provide the existence of the extension (4) or its inverse in weighted cases ω ̸=
const and p ̸= 2.

Consider the functions

f ∈ L2 (Ω) and φ ∈ ℸr
(
Wα

2,ω (Ω)
)

Definition 1. By the solution u(x) of the problem (1)-(2), we mean a function
u ∈ Wα

2, ω (Rn) such that u− Φ ∈ Ẇα
2, ω (Ω) and

∫∫
Ω×Ω

[u (x)− u(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy =

∫
Ω
f (x) g (x) dx (5)

for all test functions g ∈ Ẇα
2, ω (Ω).

In other words, we are going to solve the problem (1)-(2) for φ ∈ ℸr
(
Wα

2,ω (Ω)
)

and f(x) ∈ L2 (Ω), which means that there exists a bounded extension of φ :
Rn\Ω →R from φ ∈ Wα

2,ω (Rn\Ω) to Φ ∈ Wα
2, ω (Rn) such that Φ≡φ on Rn\Ω.

Applying the substitution z = u− Φ, we get the relation

(−∆)α/2
(
ω (x) (−∆)α/2z

)
= f (x) + F , (6)

where

F = (−∆)
α
2

(
ω (x) (−∆)

α
2 Φ

)
and z|Rn\Ω = 0 . (7)

Now, the solution of the problem (6)-(7) is a function z ∈ Ẇα
2, ω (Ω) satisfying for

∀g ∈ Ẇα
2, ω (Ω) the integral identity∫∫

Ω×Ω

[z (x)− z (y)] [g (x)− g (y)]

|x− y|n+2α ω (x) dxdy =

∫
Ω
f (x) g (x) dx−

−
∫∫

Ω×Ω

[Φ (x)− Φ(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy . (8)

To find a function z(x) satisfying (8) for all g ∈ Ẇα
2, ω (Ω) , we apply the Lax-

Milgram principle [6]. For that, let us consider the bilinear form

B (z, g) =

∫∫
Ω×Ω

[z (x)− z(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy (9)

and show that it is bounded and coercive on a Hilbert space. For that, we use
the space Ẇα

2,ω (Ω) obtained from the closure of Lip0(Ω) with respect to the norm

of space Ẇα
2,ω (Ω). Define the inner product space on Lip0(Ω) as follows:
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(z, g)H =

∫∫
Ω×Ω

[z (x)− z(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy +

∫
Ω
z (x) g (x) dx.

(10)
Evidently, (10) satisfies the properties of inner product. Hence it is a norm.

Denote by H its closure with respect to the norm ∥z∥H = ((z, z)H)1/2. The
space H is a Hilbert space. We will show that the bilinear form B(z, g) acts
boundedly and coercively in H. Let us note that H = Ẇα

2,ω (Ω), i.e.

∥g∥H = ∥g∥L2(Ω) +

(∫∫
Ω×Ω

|g (x)− g (y)|2

|x− y|n+2α ω (x) dxdy

)1/2

.

We need the following inequality from [11, 12] (see also [14]):

∥g∥2L2(Ω) ≤ c

(∫∫
Ω×Ω

[g (x)− g (y)]2

|x− y|n+2α ω (x) dxdy

)1/2

, (11)

where g ∈ H, the weight function ω : Rn → (0, ∞) is measurable, takes finite
positive values a.e. and is such that for all cubes Q ⊂ Rn centered on Ω with the
edge less than dQ (diameter of cube) the following inequality holds:∫

Q
ω−1 (x) dx ≤ c|Q|

n−2α
n , (12)

where 0 < α < min {n/2, 1}. Hence it easily follows that the same inequality
holds for all functions g ∈ Ẇα

2, ω (Ω), too. Note that more general result was
proved in the cited works: for the exponents 1 ≤ p ≤ q < ∞, α ∈ (0, 1) the
inequality

∥g∥Lq,v(Ω) ≤ C0A

(∫∫
Ω×Ω

[g (x)− g (y)]p

|x− y|n+pα K (x, y) dxdy

)1/p

(13)

was proved for all g ∈ Ẇα
2, ω (Ω) under the sufficient condition on the kernel

function:

1

|Q|

[∫∫
Q
K (x y)1−p′v(y)p

′
dxdy

]1/p′
≤ A

[∫
Q
v (x) dx

]1/q′
(14)

for all cubes Q ⊂ Rn centered on Ω with the edge less than dQ .
Consider the kernel functionK (x, y) = ω (x) /|x− y|n+pα with p = 2, q = 2.

Then
1

|Q|

[∫∫
Q∩Q

ω−1(x)|x− y|n+2αdxdy

]1/2
≤ c |Q|1/2.
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Therefore, this condition becomes∫∫
Q∩Q

ω−1(x)|x− y|n+2αdxdy ≤ c |Q|3,

and hence
ω−1 (Q) ≤ c |Q|1−2α/n, (15)

which yields the inequality with more specified constant:

∥u∥L2(Ω) ≤ C0

[
ω−1 (Q0)

|Q0|1−
2α
n

] 1
2
(∫∫

Ω×Ω

[u (x)− u (y)]2

|x− y|n+2α ω (x) dxdy

) 1
2

(16)

for all functions u ∈ Ẇα
2, ω (Ω), where Q0 is a minimal cube such that Ω ⊂ Q0.

The boundedness of bilinear form follows from (16) using Hölder’s inequality,

|B (z, v)| =

∣∣∣∣∫∫
Ω×Ω

[z (x)− z(y)] [v (x)− v(y)]

|x− y|n+2α ω (x) dxdy

∣∣∣∣
≤

[∫∫
Ω×Ω

[z (x)− z (y)]2

|x− y|n+2α ω (x) dxdy

] 1
2

.

[∫∫
Ω×Ω

[v (x)− v (y)]2

|x− y|n+2α ω (x) dxdy

] 1
2

≤ ∥z∥H ∥v∥H . (17)

The coercivity of bilinear form B(z, g) follows from (16) and the inequality:

B (z, z) =

∫∫
Ω×Ω

[z (x)− z (y)]2

|x− y|n+2α ω (x) dxdy ≤

≤ 1

2

∫∫
Ω×Ω

[z (x)− z (y)]2

|x− y|n+2α ω (x) dxdy +
1

2

∫∫
Ω×Ω

[z (x)− z (y)]2

|x− y|n+2α ω (x) dxdy.

Now, using the inequality (16) we have

B (z, z) ≥ 1

2

∫∫
Ω×Ω

[z (x)− z (y)]2

|x− y|n+2α ω (x) dxdy+
1

2C
∥z∥2L2(Ω) ≥ c1∥z∥2H , (18)

where c1 = min
{
1
2 ,

1
2C

}
, C is from the inequality (16) and does not depend on

z(x).
We have to solve the problem

(−∆)
α
2

(
ω (x) (−∆)

α
2 z
)
= f (x) + F, (19)



On the Weak Solvability of Dirichlet Problem 75

z|Rn\Ω = 0, (20)

where F is defined by (7). Substituting (7) into (19), we obtain the relation∫∫
Ω×Ω

[z (x)− z (y)] [g (x)− g (y)]

|x− y|n+2α ω (x) dxdy =

∫
Ω
f (x) g (x) dx−

−
∫∫

Ω×Ω

[Φ (x)− Φ(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy, (21)

which is suitable for applying the Lax-Milgram principle.

Now, after proving that the bilinear form is bounded and coercive, it remains
to show that the right-hand side of (21) is a bounded functional on H. To prove
this, we use Holder’s inequality to obtain∣∣∣∣∫

Ω
f (x) g (x) dx

∣∣∣∣ ≤ ∥f∥L2(Ω) × ∥g∥L2(Ω) ≤ ∥f∥L2(Ω) ∥g∥H

and ∣∣∣∣∫∫
Ω×Ω

[Φ (x)− Φ(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy

∣∣∣∣ ≤ ∥Φ∥H × ∥g∥H .

Therefore, the right-hand side of (21) is a bounded linear functional on H. Then,
by the Lax-Milgram principle, there exists a unique solution z ∈ H of the problem
(19)-(20).

Therefore, assuming f ∈ L2(Ω) and φ ∈ ℸr
(
Wα

2,ω (Ω)
)
(the class of functions

φ : Rn\Ω → R for which there exists an extention to the function Φ ∈ Wα
2, ω (Rn)

such that Φ = φ on Ω), we see that the right-hand side of (8) is a bounded
functional on H. Therefore, we can use the Lax-Milgram principle. Applying it,
we get a unique function z ∈ Ẇα

2,ω (Ω) satisfying the identity (8). In other words,
we get a solution of the problem (6)-(7).

Now, substituting the found function z ∈ Ẇα
2,ω (Ω) into (1)-(2) and using the

presentation u=z +Φ, we get∫∫
Ω×Ω

[u (x)− Φ (x)− u (y) + Φ (y)] [g (x)− g (y)]

|x− y|n+2α ω (x) dxdy =

∫
Ω
f (x) g (x) dx

−
∫∫

Ω×Ω

[Φ (x)− Φ(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy.
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After some simplifying, we arrive at the conclusion that there exists a unique
u ∈ Wα

2, ω (Rn) such that u− Φ ∈ Ẇα
2, ω (Ω) and∫∫

Ω×Ω

[u (x)− u(y)] [g (x)− g(y)]

|x− y|n+2α ω (x) dxdy =

∫
Ω
f (x) g (x) dx (22)

for all g ∈ Ẇα
2, ω (Ω), i.e. u(x) is a unique solution of the problem (1)-(2).

So we have proved the following main result of this work:

Theorem 1. Let f ∈ L2 (Ω), φ ∈ ℸr
(
Wα

2,ω (Ω)
)
, 0 < α < 1, p > 1, and the

positive measurable function ω : Rn → (0, ∞) satisfy (15). Then, for any pair
of functions (f, φ) there exists a unique weak solution u ∈ Wα

2, ω (Rn), which
solves the problem (1)-(2) in the sense of (5).
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