Azerbaijan Journal of Mathematics V. 14, No 1, 2024, January ISSN 2218-6816 https://doi.org/10.59849/2218-6816.2024.1.79

*-Operator Frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$

R. El Jazzar*, S. Kabbaj, M. Rossafi

Abstract. In this work, we introduce the concept of *-operator frame, which is a generalization of *-frames in Hilbert pro- C^* -modules, and we establish some results. We also study the tensor product of *-operator frame for Hilbert pro- C^* -modules.

Key Words and Phrases: *–frame, *–operator frame, pro- C^* -algebra, Hilbert pro- C^* -modules, tensor product.

2010 Mathematics Subject Classifications: 42C15, 46L05

1. Introduction

In 1952, Duffin and Schaeffer [3] introduced the notion of frame in nonharmonic Fourier analysis. In 1986 the work of Duffin and Schaeffer was continued by Grossman and Meyer [8]. After their works, the theory of frame was developed and has been popular.

The notion of frame on Hilbert space has been successfully extended to frames in Hilbert pro- C^* -modules. In 2008, Joita [10] proposed the concept of frames of multipliers in pro- C^* -Hilbert modules and demonstrated that many properties of frames in Hilbert C^* -modules are preserved in these frames of multipliers.

The concept of *-frames was introduced by Alijani and Dehghan [1], providing a significant advancement in the theory of frames in Hilbert spaces. Building upon this, the notion of *-operator frames was developed as a generalization of *-frames, extending the framework to more complex structures within the realm of operator theory.

The first purpose of this paper is to give the definition of *-operator frame in pro- C^* -modules and some properties.

The second purpose is to investigate the tensor product of Hilbert pro- C^* -modules, and to show that tensor product of *-operator frames for Hilbert pro- C^* -modules \mathcal{X} and \mathcal{Y} , present *-operator frame for $\mathcal{X} \otimes \mathcal{Y}$.

http://www.azjm.org

79

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

In the next section, we give some definitions and basic properties of Hilbert C^* -modules.

2. Preliminaries

The basic information about pro- C^* -algebras can be found in the works [5, 6, 7, 9, 12, 13, 14].

 C^* -algebra whose topology is induced by a family of continuous C^* -seminorms instead of a C^* -norm is called pro- C^* -algebra. Hilbert pro- C^* -modules are generalizations of Hilbert spaces by allowing the inner product to take values in a pro- C^* -algebra rather than in the field of complex numbers.

Pro- C^* -algebra is defined as a complete Hausdorff complex topological *algebra \mathcal{A} whose topology is determined by its continuous C^* -seminorms in the sense that a net $\{a_{\alpha}\}$ converges to 0 if and only if $p(a_{\alpha})$ converges to 0 for all continuous C^* -seminorms p on \mathcal{A} (see [4, 9, 11, 14]), and

1) $p(ab) \le p(a)p(b)$,

2) $p(a^*a) = p(a)^2$,

for all $a, b \in \mathcal{A}$.

If the topology of pro- C^* -algebra is determined by only countably many C^* seminorms, then it is called a σ - C^* -algebra.

We denote by sp(a) the spectrum of a such that $sp(a) = \{\lambda \in \mathbb{C} : \lambda 1_{\mathcal{A}} - a \text{ is not invertible}\}$ for all $a \in \mathcal{A}$, where \mathcal{A} is a unital pro- C^* -algebra with an identity $1_{\mathcal{A}}$.

The set of all continuous C^* -seminorms on \mathcal{A} is denoted by $S(\mathcal{A})$. \mathcal{A}^+ denotes the set of all positive elements of \mathcal{A} .

Example 1. Every C^* -algebra is a pro- C^* -algebra.

Proposition 1. [9] Let \mathcal{A} be a unital pro-C^{*}-algebra with an identity $1_{\mathcal{A}}$. Then for any $p \in S(\mathcal{A})$, we have:

- (1) $p(a) = p(a^*)$ for all $a \in A$,
- (2) $p(1_{\mathcal{A}}) = 1$,
- (3) If $a, b \in \mathcal{A}^+$ and $a \leq b$, then $p(a) \leq p(b)$,
- (4) If $1_{\mathcal{A}} \leq b$, then b is invertible and $b^{-1} \leq 1_{\mathcal{A}}$,
- (5) If $a, b \in \mathcal{A}^+$ are invertible and $0 \le a \le b$, then $0 \le b^{-1} \le a^{-1}$,

80

- (6) If $a, b, c \in \mathcal{A}$ and $a \leq b$, then $c^*ac \leq c^*bc$,
- (7) If $a, b \in \mathcal{A}^+$ and $a^2 \leq b^2$, then $0 \leq a \leq b$.

Definition 1. [14] A pre-Hilbert module over $pro-C^*$ -algebra \mathcal{A} , is a complex vector space E, which is also a left \mathcal{A} -module compatible with the complex algebra structure, equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle E \times E \to \mathcal{A}$, which is \mathbb{C} -and \mathcal{A} -linear in its first variable and satisfies the following conditions:

- 1) $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$,
- 2) $\langle \xi, \xi \rangle \ge 0$ for every $\xi \in E$,
- 3) $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$,

for all $\xi, \eta \in E$. We say E is a Hilbert A-module (or Hilbert pro-C^{*}-module over A) if it is complete with respect to the topology determined by the family of seminorms

$$\bar{p}_E(\xi) = \sqrt{p(\langle \xi, \xi \rangle)} \quad \xi \in E, p \in S(\mathcal{A}).$$

Let \mathcal{A} be a pro- C^* -algebra and let \mathcal{X} and \mathcal{Y} be Hilbert \mathcal{A} -modules and assume that I and J are countable index sets. A bounded \mathcal{A} -module map from \mathcal{X} to \mathcal{Y} is called an operator from \mathcal{X} to \mathcal{Y} . We denote the set of all operators from \mathcal{X} to \mathcal{Y} by $Hom_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$.

Definition 2. [2] An \mathcal{A} -module map $T : \mathcal{X} \longrightarrow \mathcal{Y}$ is adjointable if there is a map $T^* : \mathcal{Y} \longrightarrow \mathcal{X}$ such that $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$ for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}$, and is called bounded if for all $p \in S(\mathcal{A})$ there is $M_p > 0$ such that $\bar{p}_{\mathcal{Y}}(T\xi) \leq M_p \bar{p}_{\mathcal{X}}(\xi)$ for all $\xi \in \mathcal{X}$.

We denote by $Hom^*_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$ the set of all adjointable operators from \mathcal{X} to \mathcal{Y} , and $Hom^*_{\mathcal{A}}(\mathcal{X}) = Hom^*_{\mathcal{A}}(\mathcal{X}, \mathcal{X})$.

Definition 3. [2] Let \mathcal{A} be a pro- C^* -algebra and \mathcal{X}, \mathcal{Y} be two Hilbert \mathcal{A} -modules. The operator $T : \mathcal{X} \to \mathcal{Y}$ is called uniformly bounded below, if there exists C > 0such that for each $p \in S(\mathcal{A})$,

$$\bar{p}_{\mathcal{Y}}(T\xi) \leqslant C\bar{p}_{\mathcal{X}}(\xi), \quad \text{for all } \xi \in \mathcal{X},$$

and is called uniformly bounded above if there exists C' > 0 such that for each $p \in S(\mathcal{A})$,

$$\bar{p}_{\mathcal{Y}}(T\xi) \ge C'\bar{p}_{\mathcal{X}}(\xi), \quad \text{for all } \xi \in \mathcal{X},$$

$$\|T\|_{\infty} = \inf\{M : M \text{ is an upper bound for } T\},$$

$$\hat{p}_{\mathcal{Y}}(T) = \sup\{\bar{p}_{\mathcal{Y}}(T(x)) : \xi \in \mathcal{X}, \quad \bar{p}_{\mathcal{X}}(\xi) \leq 1\}.$$

It's clear that $\hat{p}(T) \leq ||T||_{\infty}$ for all $p \in S(\mathcal{A})$.

Proposition 2. [2]. Let \mathcal{X} be a Hilbert module over pro-C^{*}-algebra \mathcal{A} and T be an invertible element in $Hom^*_{\mathcal{A}}(\mathcal{X})$ such that both are uniformly bounded. Then for each $\xi \in \mathcal{X}$,

$$\left\|T^{-1}\right\|_{\infty}^{-2}\langle\xi,\xi\rangle \le \langle T\xi,T\xi\rangle \le \|T\|_{\infty}^{2}\langle\xi,\xi\rangle.$$

Similar to C^* -algebra, the *-homomorphism between two pro- C^* -algebras is increasing.

Lemma 1. If $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is an *-homomorphism between pro- \mathcal{C}^* -algebras, then φ is increasing, that is, if $a \leq b$, then $\varphi(a) \leq \varphi(b)$.

3. *-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$

Definition 4. A family of adjointable operators $\{T_i\}_{i \in J}$ on a Hilbert \mathcal{A} -module \mathcal{X} over a unital pro- C^* -algebra is said to be an operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$, if there exist positive constants A, B > 0 such that

$$A\langle\xi,\xi\rangle \le \sum_{i\in J} \langle T_i\xi, T_i\xi\rangle \le B\langle\xi,\xi\rangle, \forall\xi\in\mathcal{X}.$$
 (1)

The numbers A and B are called lower and upper bounds of the operator frame, respectively. If $A = B = \lambda$, the operator frame is λ -tight. If A = B = 1, it is called a normalized tight operator frame or a Parseval operator frame. If only upper inequality of (1) holds, then $\{T_i\}_{i \in J}$ is called an operator Bessel sequence for $Hom^*_{\mathcal{A}}(\mathcal{X})$.

Definition 5. A family of adjointable operators $\{T_i\}_{i \in I}$ on a Hilbert \mathcal{A} -module \mathcal{X} over a pro- C^* -algebra is said to be an *-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$, if there exist two strictly nonzero elements A and B in \mathcal{A} such that

$$A\langle\xi,\xi\rangle A^* \le \sum_{i\in I} \langle T_i\xi, T_i\xi\rangle \le B\langle\xi,\xi\rangle B^*, \forall\xi\in\mathcal{X}.$$
(2)

The elements A and B are called lower and upper bounds of the *-operator frame, respectively. If $A = B = \lambda$, the *-operator frame is λ -tight. If $A = B = 1_A$, it is called a normalized tight *-operator frame or a Parseval *-operator frame. If only upper inequality of (2) holds, then $\{T_i\}_{i \in i}$ is called an *-operator Bessel sequence for $Hom^*_A(\mathcal{X})$.

We mentioned that the set of all operator frames for $Hom^*_{\mathcal{A}}(\mathcal{X})$ can be considered as a subset of *-operator frame. To illustrate this, let $\{T_j\}_{i \in I}$ be an operator frame for Hilbert \mathcal{A} -module \mathcal{X} with operator frame real bounds A and B. Note that for $\xi \in \mathcal{X}$,

$$(\sqrt{A})1_{\mathcal{A}}\langle\xi,\xi\rangle(\sqrt{A})1_{\mathcal{A}}\leq\sum_{i\in I}\langle T_i\xi,T_i\xi\rangle\leq(\sqrt{B})1_{\mathcal{A}}\langle\xi,\xi\rangle(\sqrt{B})1_{\mathcal{A}}.$$

Therefore, every operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$ with real bounds A and B is an *-operator frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$ with \mathcal{A} -valued *-operator frame bounds $(\sqrt{A})1_{\mathcal{A}}$ and $(\sqrt{B})1_{\mathcal{B}}$.

Example 2. Let \mathcal{A} be a Hilbert pro- C^* -module over itself with the inner product $\langle a, b \rangle = ab^*$. Let $\{\xi_i\}_{i \in I}$ be an *-frame for \mathcal{A} with bounds A and B, respectively. For each $i \in I$, we define $T_i : \mathcal{A} \to \mathcal{A}$ by $T_i \xi = \langle \xi, \xi_i \rangle$, $\forall \xi \in \mathcal{A}$. T_i is adjointable and $T_i^* a = a\xi_i$ for each $a \in \mathcal{A}$. And we have

$$A\langle\xi,\xi\rangle A^* \leq \sum_{i\in I} \langle\xi,\xi_i\rangle\langle\xi_i,\xi\rangle \leq B\langle\xi,\xi\rangle B^*, \forall\xi\in\mathcal{A}.$$

Then

$$A\langle \xi, \xi \rangle A^* \leq \sum_{i \in I} \langle T_i \xi, T_i \xi \rangle \leq B\langle \xi, \xi \rangle B^*, \forall \xi \in \mathcal{A}.$$

So $\{T_i\}_{i \in I}$ is an *-operator frame in \mathcal{A} with bounds A and B, respectively.

Similar to *-frames, we introduce the *-operator frame transform and *-frame operator and establish some properties.

Theorem 1. Let $\{T_i\}_{i\in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-operator frame with lower and upper bounds A and B, respectively. The *-operator frame transform $R: \mathcal{X} \to l^2(\mathcal{X})$ defined by $R\xi = \{T_i\xi\}_{i\in I}$ is injective and closed range adjointable \mathcal{A} -module map and $\bar{p}_{\mathcal{X}}(R) \leq \bar{p}_{\mathcal{X}}(B)$. The adjoint operator R^* is surjective and it is given by $R^*(\{\xi_i\}_{i\in I}) = \sum_{i\in I} T_i^*\xi_i$ for all $\{\xi_i\}_{i\in I}$ in $l^2(\mathcal{X})$.

Proof. By the definition of norm in $l^2(\mathcal{X})$,

$$\bar{p}_{\mathcal{X}}(R\xi)^2 = p(\sum_{i \in I} \langle T_i \xi, T_i \xi \rangle) \le \bar{p}_{\mathcal{X}}(B)^2 p(\langle \xi, \xi \rangle), \forall \xi \in \mathcal{X}.$$
(3)

This inequality implies that R is well defined and $\bar{p}_{\mathcal{X}}(R) \leq \bar{p}_{\mathcal{X}}(B)$. Clearly, R is a linear \mathcal{A} -module map. We now show that the range of R is closed. Let $\{R\xi_n\}_{n\in\mathbb{N}}$ be a sequence in the range of R such that $\lim_{n\to\infty} R\xi_n = \eta$. For $n, m \in \mathbb{N}$, we have

$$p(A\langle\xi_n - \xi_m, \xi_n - \xi_m\rangle A^*) \le p(\langle R(\xi_n - \xi_m), R(\xi_n - \xi_m)\rangle) = \bar{p}_{\mathcal{X}}(R(\xi_n - \xi_m))^2.$$

Since $\{R\xi_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{X} , we have

 $p(A\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle A^*) \to 0$, as $n, m \to \infty$. Note that for $n, m \in \mathbb{N}$,

$$p(\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle) = p(A^{-1}A\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle A^*(A^*)^{-1})$$

$$\leq p(A^{-1})^2 p(A\langle \xi_n - \xi_m, \xi_n - \xi_m \rangle A^*).$$

Therefore the sequence $\{\xi_n\}_{n\in\mathbb{N}}$ is Cauchy and hence there exists $\xi \in \mathcal{X}$ such that $\xi_n \to \xi$ as $n \to \infty$. Again by (3), we have

$$\bar{p}_{\mathcal{X}}(R(\xi_n - \xi_m))^2 \le \bar{p}_{\mathcal{X}}(B)^2 p(\langle \xi_n - \xi, \xi_n - \xi \rangle).$$

Thus $p(R\xi_n - R\xi) \to 0$ as $n \to \infty$ implies that $R\xi = \eta$. It follows that the range of R is closed. Next we show that R is injective. Suppose that $\xi \in \mathcal{X}$ and $R\xi = 0$. Note that $A\langle \xi, \xi \rangle A^* \leq \langle R\xi, R\xi \rangle$. Then $\langle \xi, \xi \rangle = 0$, so $\xi = 0$, i.e. R is injective.

For $\xi \in \mathcal{X}$ and $\{\xi_i\}_{i \in I} \in l^2(\mathcal{X})$, we have

$$\langle R\xi, \{\xi_i\}_{i\in I}\rangle = \langle \{T_i\xi\}_{i\in I}, \{\xi_i\}_{i\in I}\rangle = \sum_{i\in I} \langle T_i\xi, \xi_i\rangle = \sum_{i\in I} \langle \xi, T_i^*\xi_i\rangle = \langle \xi, \sum_{i\in I} T_i^*\xi_i\rangle.$$

Then $R^*(\{\xi_i\}_{i \in I}) = \sum_{i \in I} T_i^* \xi_i$. By injectivity of R, the operator R^* has closed range and $\mathcal{X} = range(R^*)$, which completes the proof.

Now we define *-frame operator and we study some of its properties.

Definition 6. Let $\{T_i\}_{i \in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-operator frame with *-operator frame transform R and lower and upper bounds A and B, respectively. The *frame operator $S: \mathcal{X} \to \mathcal{X}$ is defined by $S\xi = R^*R\xi = \sum_{i \in I} T_i^*T_i\xi, \ \forall \xi \in \mathcal{X}.$

The following lemma is used to prove the next results.

Lemma 2. Let \mathcal{X} and \mathcal{Y} be two Hilbert \mathcal{A} -modules and $T \in Hom^*_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$.

(i) If T is injective and T has a closed range, then the adjointable map T^*T is invertible and

$$\bar{p}_{\mathcal{X}}(T^*T^{-1})^{-1}I_{\mathcal{X}} \le T^*T \le \bar{p}_{\mathcal{X}}(T)^2I_{\mathcal{X}}.$$

(ii) If T is surjective, then the adjointable map TT^* is invertible and

$$\bar{p}_{\mathcal{X}}((TT^*)^{-1})^{-1}I_{\mathcal{Y}} \le TT^* \le \bar{p}_{\mathcal{X}}(T)^2I_{\mathcal{Y}}.$$

Proof.

84

- 1. Since the adjointable map T^* is surjective, it follows that for any $\xi \in \mathcal{X}$ there exists $\eta \in \mathcal{Y}$ such that $T^*\eta = \xi$. Since $\mathcal{Y} = \ker T^* \oplus \operatorname{Im} T$, it follows that $\eta = \eta_1 + Th$ for some $\eta_1 \in \ker T^*$ and some $h \in \mathcal{X}$. Thus, $\xi = T^*(\eta_1 + Th) = T^*Th$, and hence T^*T is surjective. If $T^*T\xi = 0$, then $T\xi \in \ker T^* \cap \operatorname{Im} T = \{0\}$, which implies that $\xi = 0$. Therefore, T^*T is an injective positive map. Hence, T^*T is an invertible element of the set of all bounded \mathcal{A} -module maps, $0 \leq (T^*T)^{-1} \leq \overline{p}_{\mathcal{X}}((T^*T)^{-1})$ and $0 \leq (T^*T) \leq \overline{p}_{\mathcal{X}}((T^*T))$. Therefore, $\overline{p}_{\mathcal{X}}((T^*T)^{-1})^{-1} \leq T^*T \leq \overline{p}_{\mathcal{X}}(T)^2$
- 2. Let T be surjective. Then T^* is injective and has a closed range. By substituting T^* for T in (1), we see that TT^* is invertible and $\bar{p}_{\mathcal{X}}((TT^*)^{-1})^{-1} \leq TT^* \leq \bar{p}_{\mathcal{X}}(T)^2$.

◀

Theorem 2. The *-operator frame S is bounded, positive, self-adjoint, invertible and $\bar{p}_{\mathcal{X}}(A^{-1})^{-2} \leq \bar{p}_{\mathcal{X}}(S) \leq \bar{p}_{\mathcal{X}}(B)^2$.

Proof.

By definition we have, $\forall \xi, \eta \in \mathcal{X}$:

$$\langle S\xi, \eta \rangle = \left\langle \sum_{i \in I} T_i^* T_i \xi, \eta \right\rangle$$

= $\sum_{i \in I} \langle T_i^* T_i \xi, \eta \rangle$
= $\sum_{i \in I} \langle \xi, T_i^* T_i \eta \rangle$
= $\left\langle \xi, \sum_{i \in I} T_i^* T_i \eta \right\rangle$
= $\langle \xi, S\eta \rangle.$

Then S is selfadjoint.

By Lemma 2 and Theorem 1, S is invertible. Clearly S is positive. By definition of an *-operator frame, we have

$$A\langle\xi,\xi\rangle A^* \le \sum_{i\in I} \langle T_i\xi,T_i\xi\rangle \le B\langle\xi,\xi\rangle B^*.$$

So

$$A\langle\xi,\xi\rangle A^* \le \langle S\xi,\xi\rangle \le B\langle\xi,\xi\rangle B^*.$$

Then

$$\bar{p}_{\mathcal{X}}(A^{-1})^{-2}\bar{p}_{\mathcal{X}}(\xi)^{2} \leq \bar{p}_{\mathcal{X}}(\langle S\xi,\xi\rangle) \leq \bar{p}_{\mathcal{X}}(B)^{2}\bar{p}_{\mathcal{X}}(\xi)^{2}, \forall \xi \in \mathcal{X}.$$

If we take supremum on all $\xi \in \mathcal{X}$, where $\bar{p}_{\mathcal{X}}(\xi) \leq 1$, then $\bar{p}_{\mathcal{X}}(A^{-1})^{-2} \leq \bar{p}_{\mathcal{X}}(S) \leq \bar{p}_{\mathcal{X}}(B)^2$.

Corollary 1. Let $\{T_i\}_{i\in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-operator frame with *-operator frame transform R and lower and upper bounds A and B, respectively. Then $\{T_i\}_{i\in I}$ is an operator frame for \mathcal{X} with lower and upper bounds $\bar{p}_{\mathcal{X}}((R^*R)^{-1})^{-1}$ and $\bar{p}_{\mathcal{X}}(R)^2$, respectively.

Proof. By Theorem 1, R is injective and has a closed range, and by Lemma 2

$$\bar{p}_{\mathcal{X}}((R^*R)^{-1})^{-1}I_{\mathcal{X}} \le R^*R \le \bar{p}_{\mathcal{X}}(R)^2I_{\mathcal{X}}.$$

 So

$$\bar{p}_{\mathcal{X}}((R^*R)^{-1})^{-1}\langle\xi,\xi\rangle \leq \sum_{i\in I}\langle T_i\xi,T_i\xi\rangle \leq \bar{p}_{\mathcal{X}}(R)^2\langle\xi,\xi\rangle, \ \forall x\in\mathcal{X}.$$

Then $\{T_i\}_{i \in I}$ is an operator frame for \mathcal{X} with lower and upper bounds $\bar{p}_{\mathcal{X}}((R^*R)^{-1})^{-1}$ and $\bar{p}_{\mathcal{X}}(R)^2$, respectively.

Theorem 3. Let $\{T_i\}_{i\in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-operator frame for \mathcal{X} , with lower and upper bounds A and B, respectively, and with *-frame operator S. Let $\theta \in$ $Hom^*_{\mathcal{A}}(\mathcal{X})$ be injective and have a closed range. Then $\{T_i\theta\}_{i\in I}$ is an *-operator frame for \mathcal{X} with *-frame operator $\theta^*S\theta$ with bounds $\bar{p}_{\mathcal{X}}((\theta^*\theta)^{-1})^{-\frac{1}{2}}A$, $\bar{p}_{\mathcal{X}}(\theta)B$.

Proof. We have

$$A\langle\theta\xi,\theta\xi\rangle A^* \le \sum_{i\in I} \langle T_i\theta\xi, T_i\theta\xi\rangle \le B\langle\theta\xi,\theta\xi\rangle B^*, \forall\xi\in\mathcal{X}.$$
(4)

Using Lemma 2, we have $\bar{p}_{\mathcal{X}}((\theta^*\theta)^{-1})^{-1}\langle\xi,\xi\rangle \leq \langle\theta\xi,\theta\xi\rangle, \forall\xi\in\mathcal{X}$. This implies

$$\bar{p}_{\mathcal{X}}((\theta^*\theta)^{-1})^{-\frac{1}{2}}A\langle\xi,\xi\rangle(\bar{p}_{\mathcal{X}}((\theta^*\theta)^{-1})^{-\frac{1}{2}}A)^* \le A\langle\theta\xi,\theta\xi\rangle A^*, \forall\xi\in\mathcal{X}.$$
(5)

And we know that $\langle \theta \xi, \theta \xi \rangle \leq \bar{p}_{\mathcal{X}}(\theta)^2 \langle \xi, \xi \rangle, \forall \xi \in \mathcal{X}$. This implies that

$$B\langle\theta\xi,\theta\xi\rangle B^* \le \bar{p}_{\mathcal{X}}(\theta)B\langle\xi,\xi\rangle(\bar{p}_{\mathcal{X}}(\theta)B)^*, \forall\xi\in\mathcal{X}.$$
(6)

Using (4), (5), (6), we have

$$\bar{p}_{\mathcal{X}}((\theta^*\theta)^{-1})^{-\frac{1}{2}}A\langle\xi,\xi\rangle(\bar{p}_{\mathcal{X}}((\theta^*\theta)^{-1})^{-\frac{1}{2}}A)^* \le \sum_{i\in I}\langle T_i\theta x, T_i\theta\xi\rangle$$

86

*-Operator Frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$

$$\leq \bar{p}_{\mathcal{X}}(\theta) B \langle \xi, \xi \rangle (\bar{p}_{\mathcal{X}}(\theta) B)^*, \forall \xi \in \mathcal{X}.$$

So $\{T_i\theta\}_{i\in I}$ is an *-operator frame for \mathcal{X} .

Moreover, for every $\xi \in \mathcal{X}$, we have

$$\theta^* S \theta \xi = \theta^* \sum_{i \in I} T_i^* T_i \theta \xi = \sum_{i \in I} \theta^* T_i^* T_i \theta \xi = \sum_{i \in I} (T_i \theta)^* (T_i \theta) \xi.$$

This completes the proof. \triangleleft

Corollary 2. Let $\{T_i\}_{i \in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-operator frame for \mathcal{X} , with *frame operator S. Then $\{T_iS^{-1}\}_{i \in I}$ is an *-operator frame for \mathcal{X} .

Proof. The proof follows from Theorem 3 by taking $\theta = S^{-1}$.

Corollary 3. Let $\{T_i\}_{i \in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-operator frame for \mathcal{X} , with *frame operator S. Then $\{T_iS^{-\frac{1}{2}}\}_{i \in I}$ is a Parseval *-operator frame for \mathcal{X} .

Proof. The proof follows from Theorem 3 by taking $\theta = S^{-\frac{1}{2}}$.

Theorem 4. Let $\{T_i\}_{i\in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ be an *-operator frame for \mathcal{X} , with lower and upper bounds A and B, respectively. Let $\theta \in Hom^*_{\mathcal{A}}(\mathcal{X})$ be surjective. Then $\{\theta T_i\}_{i\in I}$ is an *-operator frame for \mathcal{X} with bounds $A\bar{p}_{\mathcal{X}}((\theta\theta^*)^{-1})^{-\frac{1}{2}}, B\bar{p}_{\mathcal{X}}(\theta)$.

Proof. By the definition of *-operator frame, we have

$$A\langle\xi,\xi\rangle A^* \le \sum_{i\in I} \langle T_i\xi, T_i\xi\rangle \le B\langle\xi,\xi\rangle B^*, \forall\xi\in\mathcal{X}.$$
(7)

Using Lemma 2, we have

$$\bar{p}_{\mathcal{X}}((\theta\theta^*)^{-1})^{-1}\langle T_i\xi, T_i\xi\rangle \le \langle \theta T_ix, \theta T_i\xi\rangle \le \bar{p}_{\mathcal{X}}^2\langle T_i\xi, T_i\xi\rangle, \forall \xi \in \mathcal{X}.$$
(8)

Using (7), (8), we have

$$\bar{p}_{\mathcal{X}}((\theta\theta^*)^{-1})^{-\frac{1}{2}}A\langle\xi,\xi\rangle(\bar{p}_{\mathcal{X}}((\theta\theta^*)^{-1})^{-\frac{1}{2}}A)^* \leq \sum_{i\in I}\langle\theta T_i\xi,\theta T_i\xi\rangle$$
$$\leq B\bar{p}_{\mathcal{X}}(\theta)\langle\xi,\xi\rangle(B\bar{p}_{\mathcal{X}}(\theta))^*,\forall\xi\in\mathcal{X}.$$

So $\{\theta T_i\}_{i\in I}$ is an *-operator frame for \mathcal{X} .

Theorem 5. Let $(\mathcal{X}, \mathcal{A}, \langle ., . \rangle_{\mathcal{A}})$ and $(\mathcal{X}, \mathcal{B}, \langle ., . \rangle_{\mathcal{B}})$ be two Hilbert pro- \mathcal{C}^* -modules and let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be an *-homomorphism and θ be a map on \mathcal{X} such that $\langle \theta\xi, \theta\eta \rangle_{\mathcal{B}} = \varphi(\langle \xi, \eta \rangle_{\mathcal{A}})$ for all $\xi, \eta \in \mathcal{X}$. Also, suppose that $\{T_i\}_{i \in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ is an *-operator frame for $(\mathcal{X}, \mathcal{A}, \langle ., . \rangle_{\mathcal{A}})$ with *-frame operator $S_{\mathcal{A}}$ and lower and upper *-operator frame bounds \mathcal{A} , \mathcal{B} , respectively. If θ is surjective and $\theta T_i = T_i \theta$ for each i in I, then $\{T_i\}_{i \in I}$ is an *-operator frame for $(\mathcal{X}, \mathcal{B}, \langle ., . \rangle_{\mathcal{B}})$ with *-frame operator $S_{\mathcal{B}}$ and lower and upper *-operator frame bounds $\varphi(\mathcal{A})$, $\varphi(\mathcal{B})$, respectively, and $\langle S_{\mathcal{B}} \theta\xi, \theta\eta \rangle_{\mathcal{B}} = \varphi(\langle S_{\mathcal{A}}\xi, \eta \rangle_{\mathcal{A}}).$

Proof. Let $\eta \in \mathcal{X}$. Then there exists $\xi \in \mathcal{X}$ such that $\theta \xi = \eta$ (θ is surjective). By the definition of *-operator frames we have

$$A\langle\xi,\xi\rangle_{\mathcal{A}}A^* \le \sum_{i\in I} \langle T_i\xi, T_i\xi\rangle_{\mathcal{A}} \le B\langle\xi,\xi\rangle_{\mathcal{A}}B^*.$$

By Lemma 1 we have

$$\varphi(A\langle\xi,\xi\rangle_{\mathcal{A}}A^*) \leq \varphi(\sum_{i\in I}\langle T_i\xi,T_i\xi\rangle_{\mathcal{A}}) \leq \varphi(B\langle\xi,\xi\rangle_{\mathcal{A}}B^*).$$

By the definition of *-homomorphism, we have

$$\varphi(A)\varphi(\langle\xi,\xi\rangle_{\mathcal{A}})\varphi(A^*) \leq \sum_{i\in I}\varphi(\langle T_i\xi,T_i\xi\rangle_{\mathcal{A}}) \leq \varphi(B)\varphi(\langle\xi,\xi\rangle_{\mathcal{A}})\varphi(B^*).$$

From the relationship between θ and φ we get

$$\varphi(A)\langle\theta\xi,\theta\xi\rangle_{\mathcal{B}}\varphi(A)^* \leq \sum_{i\in I}\langle\theta T_i\xi,\theta T_i\xi\rangle_{\mathcal{B}} \leq \varphi(B)\langle\theta\xi,\theta\xi\rangle_{\mathcal{B}}\varphi(B)^*.$$

From the relationship between θ and T_i we have

$$\varphi(A)\langle\theta\xi,\theta\xi\rangle_{\mathcal{B}}\varphi(A)^* \leq \sum_{i\in I}\langle T_i\theta\xi,T_i\theta\xi\rangle_{\mathcal{B}} \leq \varphi(B)\langle\theta\xi,\theta\xi\rangle_{\mathcal{B}}\varphi(B)^*$$

Then

$$\varphi(A)\langle\eta,\eta\rangle_{\mathcal{B}}(\varphi(A))^* \leq \sum_{i\in I} \langle T_i\eta, T_i\eta\rangle_{\mathcal{B}} \leq \varphi(B)\langle\eta,\eta\rangle_{\mathcal{B}}(\varphi(B))^*, \forall \eta \in \mathcal{X}.$$

On the other hand, we have

$$\varphi(\langle S_{\mathcal{A}}\xi,\eta\rangle_{\mathcal{A}}) = \varphi(\langle \sum_{i\in I} T_{i}^{*}T_{i}\xi,\eta\rangle_{\mathcal{A}})$$
$$= \sum_{i\in I} \varphi(\langle T_{i}\xi,T_{i}\eta\rangle_{\mathcal{A}})$$
$$= \sum_{i\in I} \langle \theta T_{i}\xi,\theta T_{i}\eta\rangle_{\mathcal{B}}$$
$$= \sum_{i\in I} \langle T_{i}\theta\xi,T_{i}\theta\eta\rangle_{\mathcal{B}}$$
$$= \langle \sum_{i\in I} T_{i}^{*}T_{i}\theta\xi,\theta\eta\rangle_{\mathcal{B}}$$
$$= \langle S_{\mathcal{B}}\theta\xi,\theta\eta\rangle_{\mathcal{B}},$$

which completes the proof. \triangleleft

4. Tensor product

The minimal or injective tensor product of the pro- C^* -algebras \mathcal{A} and \mathcal{B} , denoted by $\mathcal{A} \otimes \mathcal{B}$, is the completion of the algebraic tensor product $\mathcal{A} \otimes_{\text{alg}} \mathcal{B}$ with respect to the topology determined by a family of C^* -seminorms. Suppose that \mathcal{X} is a Hilbert module over a pro- C^* -algebra \mathcal{A} and \mathcal{Y} is a Hilbert module over a pro- C^* -algebra \mathcal{B} . The algebraic tensor product $\mathcal{X} \otimes_{\text{alg}} \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} is a pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module with the action of $\mathcal{A} \otimes \mathcal{B}$ on $\mathcal{X} \otimes_{\text{alg}} \mathcal{Y}$ defined by

$$(\xi \otimes \eta)(a \otimes b) = \xi a \otimes \eta b$$
 for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}, a \in \mathcal{A}$ and $b \in \mathcal{B}$

and the inner product

$$\langle \cdot, \cdot \rangle : (\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}) \times (\mathcal{X} \otimes_{\mathrm{alg}} \mathcal{Y}) \to \mathcal{A} \otimes_{\mathrm{alg}} \mathcal{B}.$$
 defined by
 $\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle = \langle \xi_1, \xi_2 \rangle \otimes \langle \eta_1, \eta_2 \rangle$

We also know that for $z = \sum_{i=1}^{n} \xi_i \otimes \eta_i$ in $\mathcal{X} \otimes_{alg} \mathcal{Y}$ we have $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = \sum_{i,j} \langle \xi_i, \xi_j \rangle_{\mathcal{A}} \otimes \langle \eta_i, \eta_j \rangle_{\mathcal{B}} \ge 0$ and $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = 0$ iff z = 0.

The external tensor product of \mathcal{X} and \mathcal{Y} is the Hilbert module $\mathcal{X} \otimes \mathcal{Y}$ over $\mathcal{A} \otimes \mathcal{B}$ obtained by the completion of the pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{X} \otimes_{alg} \mathcal{Y}$.

If $P \in M(\mathcal{X})$ and $Q \in M(\mathcal{Y})$, then there is a unique adjointable module morphism $P \otimes Q : \mathcal{A} \otimes \mathcal{B} \to \mathcal{X} \otimes \mathcal{Y}$ such that $(P \otimes Q)(a \otimes b) = P(a) \otimes Q(b)$ and $(P \otimes Q)^*(a \otimes b) = P^*(a) \otimes Q^*(b)$ for all $a \in A$ and for all $b \in B$ (see, for example, [10]). Let I and J be countable index sets. **Theorem 6.** Let \mathcal{X} and \mathcal{Y} be two Hilbert pro- C^* -modules over pro- C^* -algebras \mathcal{A} and \mathcal{B} , respectively. Let $\{T_i\}_{i\in I} \subset Hom^*_{\mathcal{A}}(\mathcal{X})$ and $\{L_j\}_{j\in J} \subset Hom^*_{\mathcal{B}}(\mathcal{Y})$ be two *-operator frames for \mathcal{X} and \mathcal{Y} with *-frame operators S_T and S_L and *-operator frame bounds (A, B) and (C, D), respectively. Then $\{T_i \otimes L_j\}_{i\in I, j\in J}$ is an *-operator frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{X} \otimes \mathcal{Y}$ with *-frame operator $S_T \otimes S_L$ and lower and upper *-operator frame bounds $A \otimes C$ and $B \otimes D$, respectively.

Proof. By the definition of *-operator frames $\{T_i\}_{i \in I}$ and $\{L_j\}_{j \in J}$, we have

$$A\langle\xi,\xi\rangle_{\mathcal{A}}A^* \leq \sum_{i\in I} \langle T_i\xi, T_i\xi\rangle_{\mathcal{A}} \leq B\langle\xi,\xi\rangle_{\mathcal{A}}B^*, \forall\xi\in\mathcal{X},$$

and

$$C\langle \eta,\eta\rangle_{\mathcal{B}}C^* \leq \sum_{j\in J} \langle L_j\eta,L_j\eta\rangle_{\mathcal{B}} \leq D\langle \eta,\eta\rangle_{\mathcal{B}}D^*, \forall \eta\in\mathcal{Y}.$$

Therefore,

$$(A\langle\xi,\xi\rangle_{\mathcal{A}}A^*)\otimes(C\langle\eta,\eta\rangle_{\mathcal{B}}C^*)$$

$$\leq\sum_{i\in I}\langle T_i\xi,T_i\xi\rangle_{\mathcal{A}}\otimes\sum_{j\in J}\langle L_j\eta,L_j\eta\rangle_{\mathcal{B}}$$

$$\leq(B\langle\xi,\xi\rangle_{\mathcal{A}}B^*)\otimes(D\langle\eta,\eta\rangle_{\mathcal{B}}D^*),\forall\xi\in\mathcal{X},\forall\eta\in\mathcal{Y}.$$

Then

$$(A \otimes C)(\langle \xi, \xi \rangle_{\mathcal{A}} \otimes \langle \eta, \eta \rangle_{\mathcal{B}})(A^* \otimes C^*) \\ \leq \sum_{i \in I, j \in J} \langle T_i \xi, T_i \xi \rangle_{\mathcal{A}} \otimes \langle L_j \eta, L_j \eta \rangle_{\mathcal{B}} \\ \leq (B \otimes D)(\langle \xi, \xi \rangle_{\mathcal{A}} \otimes \langle \eta, \eta \rangle_{\mathcal{B}})(B^* \otimes D^*), \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y}.$$

Consequently, we have

$$\begin{aligned} &(A \otimes C) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (A \otimes C)^* \\ &\leq \sum_{i \in I, j \in J} \langle T_i \xi \otimes L_j \eta, T_i \xi \otimes L_j \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} \\ &\leq (B \otimes D) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (B \otimes D)^*, \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y}. \end{aligned}$$

Then for all $\xi \otimes \eta \in \mathcal{X} \otimes \mathcal{Y}$ we have

$$(A \otimes C) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (A \otimes C)^*$$

$$\leq \sum_{i \in I, j \in J} \langle (T_i \otimes L_j)(\xi \otimes \eta), (T_i \otimes L_j)(\xi \otimes \eta) \rangle_{\mathcal{A} \otimes \mathcal{B}}$$

$$\leq (B \otimes D) \langle \xi \otimes \eta, \xi \otimes \eta \rangle_{\mathcal{A} \otimes \mathcal{B}} (B \otimes D)^*.$$

The last inequality is satisfied for every finite sum of elements in $\mathcal{X} \otimes_{alg} \mathcal{Y}$ and then it's satisfied for all $z \in \mathcal{X} \otimes \mathcal{Y}$. It shows that $\{T_i \otimes L_j\}_{i \in I, j \in J}$ is an *-operator frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{X} \otimes \mathcal{Y}$ with lower and upper *-operator frame bounds $A \otimes C$ and $B \otimes D$, respectively.

By the definition of *-frame operators S_T and S_L , we have:

$$S_T \xi = \sum_{i \in I} T_i^* T_i \xi, \forall \xi \in \mathcal{X},$$

and

$$S_L \eta = \sum_{j \in J} L_j^* L_j \eta, \forall \eta \in \mathcal{Y}.$$

Therefore,

$$(S_T \otimes S_L)(\xi \otimes \eta) = S_T \xi \otimes S_L \eta$$

= $\sum_{i \in I} T_i^* T_i \xi \otimes \sum_{j \in J} L_j^* L_j \eta$
= $\sum_{i \in I, j \in J} T_i^* T_i \xi \otimes L_j^* L_j \eta$
= $\sum_{i \in I, j \in J} (T_i^* \otimes L_j^*)(T_i \xi \otimes L_j \eta)$
= $\sum_{i \in I, j \in J} (T_i^* \otimes L_j^*)(T_i \otimes L_j)(\xi \otimes \eta)$
= $\sum_{i \in I, j \in J} (T_i \otimes L_j)^*)(L_i \otimes L_j)(\xi \otimes \eta).$

Now by the uniqueness of *-frame operator, the last expression is equal to $S_{T\otimes L}(\xi \otimes \eta)$. Consequently we have $(S_T \otimes S_L)(\xi \otimes \eta) = S_{T\otimes L}(\xi \otimes \eta)$. The last equality is satisfied for every finite sum of elements in $\mathcal{X} \otimes_{alg} \mathcal{Y}$ and then it's satisfied for all $z \in \mathcal{X} \otimes \mathcal{Y}$. It shows that $(S_T \otimes S_L)(z) = S_{T\otimes L}(z)$. So $S_{T\otimes L} = S_T \otimes S_L$.

References

- A. Alijani, M.A. Dehghan, *-Frames in Hilbert C*-Modules, U.P.B. Sci. Bull., Series A, 73(4), 2011, 89-106.
- [2] M. Azhini, N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C^{*}algebras, Int. J. of Industrial Mathematics, 5(2), 2013, 109-118.

- [3] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72, 1952, 341-366.
- [4] R. El Jazzar, M. Rossafi, On Frames in Hilbert Modules Over Locally C^{*}-Algebras. International Journal of Analysis and Applications, 21, 2023, 130-130.
- [5] M. Fragoulopoulou, An introduction to the representation theory of topological *-algebras, Schriftenreihe, Math. Inst., Univ. of Muenster, 2. Serie, 48, 1988, 1-81.
- [6] M. Fragoulopoulou, Tensor products of enveloping locally C*-algebras, Schriftenreihe Math. Inst., Univ. of Muenster, 3. Serie, 21, 1997, 1-81.
- [7] M. Fragoulopoulou, *Topological algebras with involution*, North Holland, Amsterdam, 2005.
- [8] A.Grossman, Y. Meyer, *Painless nonorthogonal expansions*, J. Math. Physics, 27, 1986, 1271-1283.
- [9] A. Inoue, Locally C*-algebra, Memoirs of the Faculty of Science, Kyushu University, Series A, Mathematics, 25.2, 1972, 197-235.
- [10] M. Joita, On frames in Hilbert modules over pro-C*-algebras, Topol. Appl., 156, 2008, 83-92.
- [11] E.C. Lance, *Hilbert C^{*}-modules*, A toolkit for operator algebraists, Cambridge University Press, 1995.
- [12] A. Mallios, *Topological algebras*: Selected Topics, North Holland, Amsterdam, 1986.
- [13] N.C. Phillips, Inverse limits of C*-algebras, J. Operator Theory, 19, 1988, 159-195.
- [14] N.C. Phillips, Representable K-theory for σ -C*-algebras, K-Theory, 3(5), 1989, 441-478.

Roumaissae El Jazzar Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco E-mail: roumaissae.eljazzar@uit.ac.ma

*-Operator Frame for $Hom^*_{\mathcal{A}}(\mathcal{X})$

Samir Kabbaj Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco E-mail: samkabbaj@yahoo.fr

Mohamed Rossafi Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, Fes, Morocco E-mail: rossafimohamed@gmail.com

Received 17 May 2023 Accepted 05 July 2023