Azerbaijan Journal of Mathematics
V. 14, No 1, 2024, January
ISSN 2218-6816
https://doi.org/10.59849/2218-6816.2024.1.79

-Operator Frame for $\operatorname{Hom}_{\mathcal{A}}^{}(\mathcal{X})$

R. El Jazzar*, S. Kabbaj, M. Rossafi

Abstract

In this work, we introduce the concept of $*$-operator frame, which is a generalization of $*$-frames in Hilbert pro- C^{*}-modules, and we establish some results. We also study the tensor product of $*$-operator frame for Hilbert pro- C^{*}-modules.

Key Words and Phrases: *-frame, $*-$ operator frame, pro- C^{*}-algebra, Hilbert pro-C^{*}-modules, tensor product.
2010 Mathematics Subject Classifications: 42C15, 46L05

1. Introduction

In 1952, Duffin and Schaeffer [3] introduced the notion of frame in nonharmonic Fourier analysis. In 1986 the work of Duffin and Schaeffer was continued by Grossman and Meyer [8]. After their works, the theory of frame was developed and has been popular.

The notion of frame on Hilbert space has been successfully extended to frames in Hilbert pro-C*-modules. In 2008, Joita [10] proposed the concept of frames of multipliers in pro- C^{*}-Hilbert modules and demonstrated that many properties of frames in Hilbert C^{*}-modules are preserved in these frames of multipliers.

The concept of $*$-frames was introduced by Alijani and Dehghan [1], providing a significant advancement in the theory of frames in Hilbert spaces. Building upon this, the notion of $*$-operator frames was developed as a generalization of *-frames, extending the framework to more complex structures within the realm of operator theory.

The first purpose of this paper is to give the definition of $*$-operator frame in pro- C^{*}-modules and some properties.

The second purpose is to investigate the tensor product of Hilbert pro- C^{*} modules, and to show that tensor product of $*$-operator frames for Hilbert pro-C^{*}-modules \mathcal{X} and \mathcal{Y}, present $*$-operator frame for $\mathcal{X} \otimes \mathcal{Y}$.
*Corresponding author.
http://www.azjm.org
(C) 2010 AZJM All rights reserved.

In the next section, we give some definitions and basic properties of Hilbert C^{*}-modules.

2. Preliminaries

The basic information about pro- C^{*}-algebras can be found in the works [5, 6 , $7,9,12,13,14]$.
C^{*}-algebra whose topology is induced by a family of continuous C^{*}-seminorms instead of a C^{*}-norm is called pro- C^{*}-algebra. Hilbert pro- C^{*}-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a pro- C^{*}-algebra rather than in the field of complex numbers.

Pro- C^{*}-algebra is defined as a complete Hausdorff complex topological *algebra \mathcal{A} whose topology is determined by its continuous C^{*}-seminorms in the sense that a net $\left\{a_{\alpha}\right\}$ converges to 0 if and only if $p\left(a_{\alpha}\right)$ converges to 0 for all continuous C^{*}-seminorms p on \mathcal{A} (see $[4,9,11,14]$), and

1) $p(a b) \leq p(a) p(b)$,
2) $p\left(a^{*} a\right)=p(a)^{2}$,
for all $a, b \in \mathcal{A}$.
If the topology of pro- C^{*}-algebra is determined by only countably many C^{*} seminorms, then it is called a σ - C^{*}-algebra.

We denote by $\operatorname{sp}(a)$ the spectrum of a such that $\operatorname{sp}(a)=\left\{\lambda \in \mathbb{C}: \lambda 1_{\mathcal{A}}-a\right.$ is not invertible $\}$ for all $a \in \mathcal{A}$, where \mathcal{A} is a unital pro- C^{*}-algebra with an identity $1_{\mathcal{A}}$.

The set of all continuous C^{*}-seminorms on \mathcal{A} is denoted by $S(\mathcal{A})$. \mathcal{A}^{+}denotes the set of all positive elements of \mathcal{A}.

Example 1. Every C^{*}-algebra is a pro-C ${ }^{*}$-algebra.
Proposition 1. [9] Let \mathcal{A} be a unital pro-C*-algebra with an identity $1_{\mathcal{A}}$. Then for any $p \in S(\mathcal{A})$, we have:
(1) $p(a)=p\left(a^{*}\right)$ for all $a \in A$,
(2) $p\left(1_{\mathcal{A}}\right)=1$,
(3) If $a, b \in \mathcal{A}^{+}$and $a \leq b$, then $p(a) \leq p(b)$,
(4) If $1_{\mathcal{A}} \leq b$, then b is invertible and $b^{-1} \leq 1_{\mathcal{A}}$,
(5) If $a, b \in \mathcal{A}^{+}$are invertible and $0 \leq a \leq b$, then $0 \leq b^{-1} \leq a^{-1}$,
(6) If $a, b, c \in \mathcal{A}$ and $a \leq b$, then $c^{*} a c \leq c^{*} b c$,
(7) If $a, b \in \mathcal{A}^{+}$and $a^{2} \leq b^{2}$, then $0 \leq a \leq b$.

Definition 1. [14] A pre-Hilbert module over pro-C*-algebra \mathcal{A}, is a complex vector space E, which is also a left \mathcal{A}-module compatible with the complex algebra structure, equipped with an \mathcal{A}-valued inner product $\langle.,\rangle . E \times E \rightarrow \mathcal{A}$, which is \mathbb{C}-and \mathcal{A}-linear in its first variable and satisfies the following conditions:

1) $\langle\xi, \eta\rangle^{*}=\langle\eta, \xi\rangle$ for every $\xi, \eta \in E$,
2) $\langle\xi, \xi\rangle \geq 0$ for every $\xi \in E$,
3) $\langle\xi, \xi\rangle=0$ if and only if $\xi=0$,
for all $\xi, \eta \in E$. We say E is a Hilbert \mathcal{A}-module (or Hilbert pro- C^{*}-module over \mathcal{A}) if it is complete with respect to the topology determined by the family of seminorms

$$
\bar{p}_{E}(\xi)=\sqrt{p(\langle\xi, \xi\rangle)} \quad \xi \in E, p \in S(\mathcal{A})
$$

Let \mathcal{A} be a pro- C^{*}-algebra and let \mathcal{X} and \mathcal{Y} be Hilbert \mathcal{A}-modules and assume that I and J are countable index sets. A bounded \mathcal{A}-module map from \mathcal{X} to \mathcal{Y} is called an operator from \mathcal{X} to \mathcal{Y}. We denote the set of all operators from \mathcal{X} to \mathcal{Y} by $\operatorname{Hom}_{\mathcal{A}}(\mathcal{X}, \mathcal{Y})$.
Definition 2. [2] An \mathcal{A}-module $\operatorname{map} T: \mathcal{X} \longrightarrow \mathcal{Y}$ is adjointable if there is a map $T^{*}: \mathcal{Y} \longrightarrow \mathcal{X}$ such that $\langle T \xi, \eta\rangle=\left\langle\xi, T^{*} \eta\right\rangle$ for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}$, and is called bounded if for all $p \in S(\mathcal{A})$ there is $M_{p}>0$ such that $\bar{p}_{\mathcal{Y}}(T \xi) \leq M_{p} \bar{p}_{\mathcal{X}}(\xi)$ for all $\xi \in \mathcal{X}$.

We denote by $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}, \mathcal{Y})$ the set of all adjointable operators from \mathcal{X} to \mathcal{Y}, and $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})=\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}, \mathcal{X})$.

Definition 3. [2] Let \mathcal{A} be a pro-C*-algebra and \mathcal{X}, \mathcal{Y} be two Hilbert \mathcal{A}-modules. The operator $T: \mathcal{X} \rightarrow \mathcal{Y}$ is called uniformly bounded below, if there exists $C>0$ such that for each $p \in S(\mathcal{A})$,

$$
\bar{p}_{\mathcal{Y}}(T \xi) \leqslant C \bar{p}_{\mathcal{X}}(\xi), \quad \text { for all } \xi \in \mathcal{X}
$$

and is called uniformly bounded above if there exists $C^{\prime}>0$ such that for each $p \in S(\mathcal{A})$,

$$
\begin{gathered}
\bar{p} \mathcal{Y}(T \xi) \geqslant C^{\prime} \bar{p}_{\mathcal{X}}(\xi), \quad \text { for all } \xi \in \mathcal{X} \\
\|T\|_{\infty}=\inf \{M: M \text { is an upper bound for } T\} \\
\hat{p} \mathcal{Y}(T)=\sup \left\{\bar{p}_{\mathcal{Y}}(T(x)): \xi \in \mathcal{X}, \quad \bar{p}_{\mathcal{X}}(\xi) \leqslant 1\right\}
\end{gathered}
$$

It's clear that $\hat{p}(T) \leqslant\|T\|_{\infty}$ for all $p \in S(\mathcal{A})$.

Proposition 2. [2]. Let \mathcal{X} be a Hilbert module over pro-C*-algebra \mathcal{A} and T be an invertible element in $H o m_{\mathcal{A}}^{*}(\mathcal{X})$ such that both are uniformly bounded. Then for each $\xi \in \mathcal{X}$,

$$
\left\|T^{-1}\right\|_{\infty}^{-2}\langle\xi, \xi\rangle \leq\langle T \xi, T \xi\rangle \leq\|T\|_{\infty}^{2}\langle\xi, \xi\rangle .
$$

Similar to C^{*}-algebra, the $*$-homomorphism between two pro- C^{*}-algebras is increasing.

Lemma 1. If $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is an $*$-homomorphism between pro- \mathcal{C}^{*}-algebras, then φ is increasing, that is, if $a \leq b$, then $\varphi(a) \leq \varphi(b)$.

3. *-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$

Definition 4. A family of adjointable operators $\left\{T_{i}\right\}_{i \in J}$ on a Hilbert \mathcal{A}-module \mathcal{X} over a unital pro-C*-algebra is said to be an operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$, if there exist positive constants $A, B>0$ such that

$$
\begin{equation*}
A\langle\xi, \xi\rangle \leq \sum_{i \in J}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle, \forall \xi \in \mathcal{X} . \tag{1}
\end{equation*}
$$

The numbers A and B are called lower and upper bounds of the operator frame, respectively. If $A=B=\lambda$, the operator frame is λ-tight. If $A=B=1$, it is called a normalized tight operator frame or a Parseval operator frame. If only upper inequality of (1) holds, then $\left\{T_{i}\right\}_{i \in J}$ is called an operator Bessel sequence for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$.

Definition 5. A family of adjointable operators $\left\{T_{i}\right\}_{i \in I}$ on a Hilbert \mathcal{A}-module \mathcal{X} over a pro-C C^{*}-algebra is said to be an $*$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$, if there exist two strictly nonzero elements A and B in \mathcal{A} such that

$$
\begin{equation*}
A\langle\xi, \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{X} . \tag{2}
\end{equation*}
$$

The elements A and B are called lower and upper bounds of the $*$-operator frame, respectively. If $A=B=\lambda$, the $*$-operator frame is λ-tight. If $A=B=1_{\mathcal{A}}$, it is called a normalized tight $*$-operator frame or a Parseval $*$-operator frame. If only upper inequality of (2) holds, then $\left\{T_{i}\right\}_{i \in i}$ is called an $*$-operator Bessel sequence for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$.

We mentioned that the set of all operator frames for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ can be considered as a subset of $*$-operator frame. To illustrate this, let $\left\{T_{j}\right\}_{i \in I}$ be an operator
frame for Hilbert \mathcal{A}-module \mathcal{X} with operator frame real bounds A and B. Note that for $\xi \in \mathcal{X}$,

$$
(\sqrt{A}) 1_{\mathcal{A}}\langle\xi, \xi\rangle(\sqrt{A}) 1_{\mathcal{A}} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq(\sqrt{B}) 1_{\mathcal{A}}\langle\xi, \xi\rangle(\sqrt{B}) 1_{\mathcal{A}}
$$

Therefore, every operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ with real bounds A and B is an $*$-operator frame for $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ with \mathcal{A}-valued $*$-operator frame bounds $(\sqrt{A}) 1_{\mathcal{A}}$ and $(\sqrt{B}) 1_{\mathcal{B}}$.
Example 2. Let \mathcal{A} be a Hilbert pro-C*-module over itself with the inner product $\langle a, b\rangle=a b^{*}$. Let $\left\{\xi_{i}\right\}_{i \in I}$ be an $*$-frame for \mathcal{A} with bounds A and B, respectively. For each $i \in I$, we define $T_{i}: \mathcal{A} \rightarrow \mathcal{A}$ by $T_{i} \xi=\left\langle\xi, \xi_{i}\right\rangle, \quad \forall \xi \in \mathcal{A}$. T_{i} is adjointable and $T_{i}^{*} a=a \xi_{i}$ for each $a \in \mathcal{A}$. And we have

$$
A\langle\xi, \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle\xi, \xi_{i}\right\rangle\left\langle\xi_{i}, \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{A} .
$$

Then

$$
A\langle\xi, \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{A} .
$$

So $\left\{T_{i}\right\}_{i \in I}$ is an *-operator frame in \mathcal{A} with bounds A and B, respectively.
Similar to $*$-frames, we introduce the $*$-operator frame transform and $*$-frame operator and establish some properties.

Theorem 1. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an $*$-operator frame with lower and upper bounds A and B, respectively. The $*$-operator frame transform $R: \mathcal{X} \rightarrow$ $l^{2}(\mathcal{X})$ defined by $R \xi=\left\{T_{i} \xi\right\}_{i \in I}$ is injective and closed range adjointable \mathcal{A}-module map and $\bar{p}_{\mathcal{X}}(R) \leq \bar{p}_{\mathcal{X}}(B)$. The adjoint operator R^{*} is surjective and it is given by $R^{*}\left(\left\{\xi_{i}\right\}_{i \in I}\right)=\sum_{i \in I} T_{i}^{*} \xi_{i}$ for all $\left\{\xi_{i}\right\}_{i \in I}$ in $l^{2}(\mathcal{X})$.

Proof. By the definition of norm in $l^{2}(\mathcal{X})$,

$$
\begin{equation*}
\bar{p}_{\mathcal{X}}(R \xi)^{2}=p\left(\sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle\right) \leq \bar{p}_{\mathcal{X}}(B)^{2} p(\langle\xi, \xi\rangle), \forall \xi \in \mathcal{X} . \tag{3}
\end{equation*}
$$

This inequality implies that R is well defined and $\bar{p}_{\mathcal{X}}(R) \leq \bar{p}_{\mathcal{X}}(B)$. Clearly, R is a linear \mathcal{A}-module map. We now show that the range of R is closed. Let $\left\{R \xi_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in the range of R such that $\lim _{n \rightarrow \infty} R \xi_{n}=\eta$. For $n, m \in \mathbb{N}$, we have

$$
p\left(A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\right) \leq p\left(\left\langle R\left(\xi_{n}-\xi_{m}\right), R\left(\xi_{n}-\xi_{m}\right)\right\rangle\right)=\bar{p}_{\mathcal{X}}\left(R\left(\xi_{n}-\xi_{m}\right)\right)^{2} .
$$

Since $\left\{R \xi_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathcal{X}, we have
$p\left(A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\right) \rightarrow 0$, as $n, m \rightarrow \infty$.
Note that for $n, m \in \mathbb{N}$,

$$
\begin{aligned}
p\left(\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle\right) & =p\left(A^{-1} A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\left(A^{*}\right)^{-1}\right) \\
& \leq p\left(A^{-1}\right)^{2} p\left(A\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle A^{*}\right)
\end{aligned}
$$

Therefore the sequence $\left\{\xi_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy and hence there exists $\xi \in \mathcal{X}$ such that $\xi_{n} \rightarrow \xi$ as $n \rightarrow \infty$. Again by (3), we have

$$
\bar{p}_{\mathcal{X}}\left(R\left(\xi_{n}-\xi_{m}\right)\right)^{2} \leq \bar{p}_{\mathcal{X}}(B)^{2} p\left(\left\langle\xi_{n}-\xi, \xi_{n}-\xi\right\rangle\right)
$$

Thus $p\left(R \xi_{n}-R \xi\right) \rightarrow 0$ as $n \rightarrow \infty$ implies that $R \xi=\eta$. It follows that the range of R is closed. Next we show that R is injective. Suppose that $\xi \in \mathcal{X}$ and $R \xi=0$. Note that $A\langle\xi, \xi\rangle A^{*} \leq\langle R \xi, R \xi\rangle$. Then $\langle\xi, \xi\rangle=0$, so $\xi=0$, i.e. R is injective.

For $\xi \in \mathcal{X}$ and $\left\{\xi_{i}\right\}_{i \in I} \in l^{2}(\mathcal{X})$, we have

$$
\left\langle R \xi,\left\{\xi_{i}\right\}_{i \in I}\right\rangle=\left\langle\left\{T_{i} \xi\right\}_{i \in I},\left\{\xi_{i}\right\}_{i \in I}\right\rangle=\sum_{i \in I}\left\langle T_{i} \xi, \xi_{i}\right\rangle=\sum_{i \in I}\left\langle\xi, T_{i}^{*} \xi_{i}\right\rangle=\left\langle\xi, \sum_{i \in I} T_{i}^{*} \xi_{i}\right\rangle
$$

Then $R^{*}\left(\left\{\xi_{i}\right\}_{i \in I}\right)=\sum_{i \in I} T_{i}^{*} \xi_{i}$. By injectivity of R, the operator R^{*} has closed range and $\mathcal{X}=\operatorname{range}\left(R^{*}\right)$, which completes the proof.

Now we define $*$-frame operator and we study some of its properties.
Definition 6. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an $*$-operator frame with $*$-operator frame transform R and lower and upper bounds A and B, respectively. The *frame operator $S: \mathcal{X} \rightarrow \mathcal{X}$ is defined by $S \xi=R^{*} R \xi=\sum_{i \in I} T_{i}^{*} T_{i} \xi, \quad \forall \xi \in \mathcal{X}$.

The following lemma is used to prove the next results.
Lemma 2. Let \mathcal{X} and \mathcal{Y} be two Hilbert \mathcal{A}-modules and $T \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X}, \mathcal{Y})$.
(i) If T is injective and T has a closed range, then the adjointable map $T^{*} T$ is invertible and

$$
\bar{p}_{\mathcal{X}}\left(T^{*} T^{-1}\right)^{-1} I_{\mathcal{X}} \leq T^{*} T \leq \bar{p}_{\mathcal{X}}(T)^{2} I_{\mathcal{X}}
$$

(ii) If T is surjective, then the adjointable map $T T^{*}$ is invertible and

$$
\bar{p}_{\mathcal{X}}\left(\left(T T^{*}\right)^{-1}\right)^{-1} I_{\mathcal{Y}} \leq T T^{*} \leq \bar{p}_{\mathcal{X}}(T)^{2} I_{\mathcal{Y}}
$$

Proof.

1. Since the adjointable map T^{*} is surjective, it follows that for any $\xi \in$ \mathcal{X} there exists $\eta \in \mathcal{Y}$ such that $T^{*} \eta=\xi$. Since $\mathcal{Y}=\operatorname{ker} T^{*} \oplus \operatorname{Im} T$, it follows that $\eta=\eta_{1}+T h$ for some $\eta_{1} \in \operatorname{ker} T^{*}$ and some $h \in \mathcal{X}$. Thus, $\xi=T^{*}\left(\eta_{1}+T h\right)=T^{*} T h$, and hence $T^{*} T$ is surjective. If $T^{*} T \xi=0$, then $T \xi \in \operatorname{ker} T^{*} \cap \operatorname{Im} T=\{0\}$, which implies that $\xi=0$. Therefore, $T^{*} T$ is an injective positive map. Hence, $T^{*} T$ is an invertible element of the set of all bounded \mathcal{A}-module maps, $0 \leq\left(T^{*} T\right)^{-1} \leq \bar{p}_{\mathcal{X}}\left(\left(T^{*} T\right)^{-1}\right)$ and $0 \leq\left(T^{*} T\right) \leq \bar{p}_{\mathcal{X}}\left(\left(T^{*} T\right)\right)$. Therefore, $\bar{p}_{\mathcal{X}}\left(\left(T^{*} T\right)^{-1}\right)^{-1} \leq T^{*} T \leq \bar{p}_{\mathcal{X}}(T)^{2}$
2. Let T be surjective. Then T^{*} is injective and has a closed range. By substituting T^{*} for T in (1), we see that $T T^{*}$ is invertible and $\bar{p}_{\mathcal{X}}\left(\left(T T^{*}\right)^{-1}\right)^{-1} \leq$ $T T^{*} \leq \bar{p}_{\mathcal{X}}(T)^{2}$.

Theorem 2. The *-operator frame S is bounded, positive, self-adjoint, invertible and $\bar{p}_{\mathcal{X}}\left(A^{-1}\right)^{-2} \leq \bar{p}_{\mathcal{X}}(S) \leq \bar{p}_{\mathcal{X}}(B)^{2}$.

Proof.
By definition we have, $\forall \xi, \eta \in \mathcal{X}$:

$$
\begin{aligned}
\langle S \xi, \eta\rangle & =\left\langle\sum_{i \in I} T_{i}^{*} T_{i} \xi, \eta\right\rangle \\
& =\sum_{i \in I}\left\langle T_{i}^{*} T_{i} \xi, \eta\right\rangle \\
& =\sum_{i \in I}\left\langle\xi, T_{i}^{*} T_{i} \eta\right\rangle \\
& =\left\langle\xi, \sum_{i \in I} T_{i}^{*} T_{i} \eta\right\rangle \\
& =\langle\xi, S \eta\rangle .
\end{aligned}
$$

Then S is selfadjoint.
By Lemma 2 and Theorem 1, S is invertible. Clearly S is positive.
By definition of an $*$-operator frame, we have

$$
A\langle\xi, \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}
$$

So

$$
A\langle\xi, \xi\rangle A^{*} \leq\langle S \xi, \xi\rangle \leq B\langle\xi, \xi\rangle B^{*} .
$$

Then

$$
\bar{p}_{\mathcal{X}}\left(A^{-1}\right)^{-2} \bar{p}_{\mathcal{X}}(\xi)^{2} \leq \bar{p}_{\mathcal{X}}(\langle S \xi, \xi\rangle) \leq \bar{p}_{\mathcal{X}}(B)^{2} \bar{p}_{\mathcal{X}}(\xi)^{2}, \forall \xi \in \mathcal{X} .
$$

If we take supremum on all $\xi \in \mathcal{X}$, where $\bar{p}_{\mathcal{X}}(\xi) \leq 1$, then $\bar{p}_{\mathcal{X}}\left(A^{-1}\right)^{-2} \leq \bar{p}_{\mathcal{X}}(S) \leq$ $\bar{p}_{\mathcal{X}}(B)^{2}$.

Corollary 1. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an $*$-operator frame with $*$-operator frame transform R and lower and upper bounds A and B, respectively. Then $\left\{T_{i}\right\}_{i \in I}$ is an operator frame for \mathcal{X} with lower and upper bounds $\bar{p} \mathcal{X}\left(\left(R^{*} R\right)^{-1}\right)^{-1}$ and $\bar{p}_{\mathcal{X}}(R)^{2}$, respectively.

Proof. By Theorem 1, R is injective and has a closed range, and by Lemma 2

$$
\bar{p}_{\mathcal{X}}\left(\left(R^{*} R\right)^{-1}\right)^{-1} I_{\mathcal{X}} \leq R^{*} R \leq \bar{p}_{\mathcal{X}}(R)^{2} I_{\mathcal{X}} .
$$

So

$$
\bar{p} \mathcal{X}\left(\left(R^{*} R\right)^{-1}\right)^{-1}\langle\xi, \xi\rangle \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq \bar{p}_{\mathcal{X}}(R)^{2}\langle\xi, \xi\rangle, \quad \forall x \in \mathcal{X} .
$$

Then $\left\{T_{i}\right\}_{i \in I}$ is an operator frame for \mathcal{X} with lower and upper bounds $\bar{p}_{\mathcal{X}}\left(\left(R^{*} R\right)^{-1}\right)^{-1}$ and $\bar{p}_{\mathcal{X}}(R)^{2}$, respectively.

Theorem 3. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an $*$-operator frame for \mathcal{X}, with lower and upper bounds A and B, respectively, and with $*$-frame operator S. Let $\theta \in$ $\operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be injective and have a closed range. Then $\left\{T_{i} \theta\right\}_{i \in I}$ is an $*$-operator frame for \mathcal{X} with $*$-frame operator $\theta^{*} S \theta$ with bounds $\bar{p}_{\mathcal{X}}\left(\left(\theta^{*} \theta\right)^{-1}\right)^{-\frac{1}{2}} A, \bar{p}_{\mathcal{X}}(\theta) B$.

Proof. We have

$$
\begin{equation*}
A\langle\theta \xi, \theta \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} \theta \xi, T_{i} \theta \xi\right\rangle \leq B\langle\theta \xi, \theta \xi\rangle B^{*}, \forall \xi \in \mathcal{X} . \tag{4}
\end{equation*}
$$

Using Lemma 2, we have $\bar{p}_{\mathcal{X}}\left(\left(\theta^{*} \theta\right)^{-1}\right)^{-1}\langle\xi, \xi\rangle \leq\langle\theta \xi, \theta \xi\rangle, \forall \xi \in \mathcal{X}$. This implies

$$
\begin{equation*}
\bar{p}_{\mathcal{X}}\left(\left(\theta^{*} \theta\right)^{-1}\right)^{-\frac{1}{2}} A\langle\xi, \xi\rangle\left(\bar{p}_{\mathcal{X}}\left(\left(\theta^{*} \theta\right)^{-1}\right)^{-\frac{1}{2}} A\right)^{*} \leq A\langle\theta \xi, \theta \xi\rangle A^{*}, \forall \xi \in \mathcal{X} . \tag{5}
\end{equation*}
$$

And we know that $\langle\theta \xi, \theta \xi\rangle \leq \bar{p}_{\mathcal{X}}(\theta)^{2}\langle\xi, \xi\rangle, \forall \xi \in \mathcal{X}$. This implies that

$$
\begin{equation*}
B\langle\theta \xi, \theta \xi\rangle B^{*} \leq \bar{p}_{\mathcal{X}}(\theta) B\langle\xi, \xi\rangle\left(\bar{p}_{\mathcal{X}}(\theta) B\right)^{*}, \forall \xi \in \mathcal{X} . \tag{6}
\end{equation*}
$$

Using (4), (5), (6), we have

$$
\bar{p}_{\mathcal{X}}\left(\left(\theta^{*} \theta\right)^{-1}\right)^{-\frac{1}{2}} A\langle\xi, \xi\rangle\left(\bar{p}_{\mathcal{X}}\left(\left(\theta^{*} \theta\right)^{-1}\right)^{-\frac{1}{2}} A\right)^{*} \leq \sum_{i \in I}\left\langle T_{i} \theta x, T_{i} \theta \xi\right\rangle
$$

$$
\leq \bar{p}_{\mathcal{X}}(\theta) B\langle\xi, \xi\rangle\left(\bar{p}_{\mathcal{X}}(\theta) B\right)^{*}, \forall \xi \in \mathcal{X}
$$

So $\left\{T_{i} \theta\right\}_{i \in I}$ is an $*$-operator frame for \mathcal{X}.
Moreover, for every $\xi \in \mathcal{X}$, we have

$$
\theta^{*} S \theta \xi=\theta^{*} \sum_{i \in I} T_{i}^{*} T_{i} \theta \xi=\sum_{i \in I} \theta^{*} T_{i}^{*} T_{i} \theta \xi=\sum_{i \in I}\left(T_{i} \theta\right)^{*}\left(T_{i} \theta\right) \xi
$$

This completes the proof.

Corollary 2. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an $*$-operator frame for \mathcal{X}, with *frame operator S. Then $\left\{T_{i} S^{-1}\right\}_{i \in I}$ is an *-operator frame for \mathcal{X}.

Proof. The proof follows from Theorem 3 by taking $\theta=S^{-1}$.

Corollary 3. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an $*$-operator frame for \mathcal{X}, with $*-$ frame operator S. Then $\left\{T_{i} S^{-\frac{1}{2}}\right\}_{i \in I}$ is a Parseval $*$-operator frame for \mathcal{X}.

Proof. The proof follows from Theorem 3 by taking $\theta=S^{-\frac{1}{2}}$.

Theorem 4. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be an *-operator frame for \mathcal{X}, with lower and upper bounds A and B, respectively. Let $\theta \in \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ be surjective. Then $\left\{\theta T_{i}\right\}_{i \in I}$ is an *-operator frame for \mathcal{X} with bounds $A \bar{p}_{\mathcal{X}}\left(\left(\theta \theta^{*}\right)^{-1}\right)^{-\frac{1}{2}}, B \bar{p}_{\mathcal{X}}(\theta)$.

Proof. By the definition of $*$-operator frame, we have

$$
\begin{equation*}
A\langle\xi, \xi\rangle A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq B\langle\xi, \xi\rangle B^{*}, \forall \xi \in \mathcal{X} \tag{7}
\end{equation*}
$$

Using Lemma 2, we have

$$
\begin{equation*}
\bar{p}_{\mathcal{X}}\left(\left(\theta \theta^{*}\right)^{-1}\right)^{-1}\left\langle T_{i} \xi, T_{i} \xi\right\rangle \leq\left\langle\theta T_{i} x, \theta T_{i} \xi\right\rangle \leq \bar{p}_{\mathcal{X}}^{2}\left\langle T_{i} \xi, T_{i} \xi\right\rangle, \forall \xi \in \mathcal{X} \tag{8}
\end{equation*}
$$

Using (7), (8), we have

$$
\begin{aligned}
\bar{p}_{\mathcal{X}}\left(\left(\theta \theta^{*}\right)^{-1}\right)^{-\frac{1}{2}} A\langle\xi, \xi\rangle\left(\bar{p}_{\mathcal{X}}\left(\left(\theta \theta^{*}\right)^{-1}\right)^{-\frac{1}{2}} A\right)^{*} & \leq \sum_{i \in I}\left\langle\theta T_{i} \xi, \theta T_{i} \xi\right\rangle \\
& \leq B \bar{p}_{\mathcal{X}}(\theta)\langle\xi, \xi\rangle\left(B \bar{p}_{\mathcal{X}}(\theta)\right)^{*}, \forall \xi \in \mathcal{X}
\end{aligned}
$$

So $\left\{\theta T_{i}\right\}_{i \in I}$ is an $*$-operator frame for \mathcal{X}.

Theorem 5. Let $\left(\mathcal{X}, \mathcal{A},\langle., .\rangle_{\mathcal{A}}\right)$ and $\left(\mathcal{X}, \mathcal{B},\langle., .\rangle_{\mathcal{B}}\right)$ be two Hilbert pro- \mathcal{C}^{*}-modules and let $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be an $*$-homomorphism and θ be a map on \mathcal{X} such that $\langle\theta \xi, \theta \eta\rangle_{\mathcal{B}}=\varphi\left(\langle\xi, \eta\rangle_{\mathcal{A}}\right)$ for all $\xi, \eta \in \mathcal{X}$. Also, suppose that $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ is an $*$-operator frame for $\left(\mathcal{X}, \mathcal{A},\langle., .\rangle_{\mathcal{A}}\right)$ with $*$-frame operator $S_{\mathcal{A}}$ and lower and upper $*$-operator frame bounds A, B, respectively. If θ is surjective and $\theta T_{i}=T_{i} \theta$ for each i in I, then $\left\{T_{i}\right\}_{i \in I}$ is an $*$-operator frame for $\left(\mathcal{X}, \mathcal{B},\langle., .\rangle_{\mathcal{B}}\right)$ with $*$-frame operator $S_{\mathcal{B}}$ and lower and upper $*$-operator frame bounds $\varphi(A)$, $\varphi(B)$, respectively, and $\left\langle S_{\mathcal{B}} \theta \xi, \theta \eta\right\rangle_{\mathcal{B}}=\varphi\left(\left\langle S_{\mathcal{A}} \xi, \eta\right\rangle_{\mathcal{A}}\right)$.

Proof. Let $\eta \in \mathcal{X}$. Then there exists $\xi \in \mathcal{X}$ such that $\theta \xi=\eta$ (θ is surjective). By the definition of $*$-operator frames we have

$$
A\langle\xi, \xi\rangle_{\mathcal{A}} A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}} \leq B\langle\xi, \xi\rangle_{\mathcal{A}} B^{*}
$$

By Lemma 1 we have

$$
\varphi\left(A\langle\xi, \xi\rangle_{\mathcal{A}} A^{*}\right) \leq \varphi\left(\sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}}\right) \leq \varphi\left(B\langle\xi, \xi\rangle_{\mathcal{A}} B^{*}\right) .
$$

By the definition of $*$-homomorphism, we have

$$
\varphi(A) \varphi\left(\langle\xi, \xi\rangle_{\mathcal{A}}\right) \varphi\left(A^{*}\right) \leq \sum_{i \in I} \varphi\left(\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}}\right) \leq \varphi(B) \varphi\left(\langle\xi, \xi\rangle_{\mathcal{A}}\right) \varphi\left(B^{*}\right) .
$$

From the relationship between θ and φ we get

$$
\varphi(A)\langle\theta \xi, \theta \xi\rangle_{\mathcal{B}} \varphi(A)^{*} \leq \sum_{i \in I}\left\langle\theta T_{i} \xi, \theta T_{i} \xi\right\rangle_{\mathcal{B}} \leq \varphi(B)\langle\theta \xi, \theta \xi\rangle_{\mathcal{B}} \varphi(B)^{*} .
$$

From the relationship between θ and T_{i} we have

$$
\varphi(A)\langle\theta \xi, \theta \xi\rangle_{\mathcal{B}} \varphi(A)^{*} \leq \sum_{i \in I}\left\langle T_{i} \theta \xi, T_{i} \theta \xi\right\rangle_{\mathcal{B}} \leq \varphi(B)\langle\theta \xi, \theta \xi\rangle_{\mathcal{B}} \varphi(B)^{*} .
$$

Then

$$
\varphi(A)\langle\eta, \eta\rangle_{\mathcal{B}}(\varphi(A))^{*} \leq \sum_{i \in I}\left\langle T_{i} \eta, T_{i} \eta\right\rangle_{\mathcal{B}} \leq \varphi(B)\langle\eta, \eta\rangle_{\mathcal{B}}(\varphi(B))^{*}, \forall \eta \in \mathcal{X} .
$$

On the other hand, we have

$$
\begin{aligned}
\varphi\left(\left\langle S_{\mathcal{A}} \xi, \eta\right\rangle_{\mathcal{A}}\right) & =\varphi\left(\left\langle\sum_{i \in I} T_{i}^{*} T_{i} \xi, \eta\right\rangle_{\mathcal{A}}\right) \\
& =\sum_{i \in I} \varphi\left(\left\langle T_{i} \xi, T_{i} \eta\right\rangle_{\mathcal{A}}\right) \\
& =\sum_{i \in I}\left\langle\theta T_{i} \xi, \theta T_{i} \eta\right\rangle_{\mathcal{B}} \\
& =\sum_{i \in I}\left\langle T_{i} \theta \xi, T_{i} \theta \eta\right\rangle_{\mathcal{B}} \\
& =\left\langle\sum_{i \in I} T_{i}^{*} T_{i} \theta \xi, \theta \eta\right\rangle_{\mathcal{B}} \\
& =\left\langle S_{\mathcal{B}} \theta \xi, \theta \eta\right\rangle_{\mathcal{B}}
\end{aligned}
$$

which completes the proof.

4. Tensor product

The minimal or injective tensor product of the pro- C^{*}-algebras \mathcal{A} and \mathcal{B}, denoted by $\mathcal{A} \otimes \mathcal{B}$, is the completion of the algebraic tensor product $\mathcal{A} \otimes_{\text {alg }} \mathcal{B}$ with respect to the topology determined by a family of C^{*}-seminorms. Suppose that \mathcal{X} is a Hilbert module over a pro- C^{*}-algebra \mathcal{A} and \mathcal{Y} is a Hilbert module over a pro- C^{*}-algebra \mathcal{B}. The algebraic tensor product $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$ of \mathcal{X} and \mathcal{Y} is a pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$-module with the action of $\mathcal{A} \otimes \mathcal{B}$ on $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$ defined by

$$
(\xi \otimes \eta)(a \otimes b)=\xi a \otimes \eta b \text { for all } \xi \in \mathcal{X}, \eta \in \mathcal{Y}, a \in \mathcal{A} \text { and } b \in \mathcal{B}
$$

and the inner product

$$
\begin{gathered}
\langle\cdot, \cdot\rangle:\left(\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}\right) \times\left(\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}\right) \rightarrow \mathcal{A} \otimes_{\text {alg }} \mathcal{B} . \text { defined by } \\
\left\langle\xi_{1} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right\rangle=\left\langle\xi_{1}, \xi_{2}\right\rangle \otimes\left\langle\eta_{1}, \eta_{2}\right\rangle
\end{gathered}
$$

We also know that for $z=\sum_{i=1}^{n} \xi_{i} \otimes \eta_{i}$ in $\mathcal{X} \otimes_{a l g} \mathcal{Y}$ we have $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=$ $\sum_{i, j}\left\langle\xi_{i}, \xi_{j}\right\rangle_{\mathcal{A}} \otimes\left\langle\eta_{i}, \eta_{j}\right\rangle_{\mathcal{B}} \geq 0$ and $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=0$ iff $z=0$.
The external tensor product of \mathcal{X} and \mathcal{Y} is the Hilbert module $\mathcal{X} \otimes \mathcal{Y}$ over $\mathcal{A} \otimes \mathcal{B}$ obtained by the completion of the pre-Hilbert $\mathcal{A} \otimes \mathcal{B}$-module $\mathcal{X} \otimes_{\text {alg }} \mathcal{Y}$.

If $P \in M(\mathcal{X})$ and $Q \in M(\mathcal{Y})$, then there is a unique adjointable module morphism $P \otimes Q: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{X} \otimes \mathcal{Y}$ such that $(P \otimes Q)(a \otimes b)=P(a) \otimes Q(b)$ and $(P \otimes Q)^{*}(a \otimes b)=P^{*}(a) \otimes Q^{*}(b)$ for all $a \in A$ and for all $b \in B$ (see, for example, [10]). Let I and J be countable index sets.

Theorem 6. Let \mathcal{X} and \mathcal{Y} be two Hilbert pro- C^{*}-modules over pro- C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively. Let $\left\{T_{i}\right\}_{i \in I} \subset \operatorname{Hom}_{\mathcal{A}}^{*}(\mathcal{X})$ and $\left\{L_{j}\right\}_{j \in J} \subset \operatorname{Hom}_{\mathcal{B}}^{*}(\mathcal{Y})$ be two *-operator frames for \mathcal{X} and \mathcal{Y} with $*$-frame operators S_{T} and S_{L} and $*$-operator frame bounds (A, B) and (C, D), respectively. Then $\left\{T_{i} \otimes L_{j}\right\}_{i \in I, j \in J}$ is an *operator frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$-module $\mathcal{X} \otimes \mathcal{Y}$ with $*$-frame operator $S_{T} \otimes S_{L}$ and lower and upper $*$-operator frame bounds $A \otimes C$ and $B \otimes D$, respectively.

Proof. By the definition of $*$-operator frames $\left\{T_{i}\right\}_{i \in I}$ and $\left\{L_{j}\right\}_{j \in J}$, we have

$$
A\langle\xi, \xi\rangle_{\mathcal{A}} A^{*} \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}} \leq B\langle\xi, \xi\rangle_{\mathcal{A}} B^{*}, \forall \xi \in \mathcal{X}
$$

and

$$
C\langle\eta, \eta\rangle_{\mathcal{B}} C^{*} \leq \sum_{j \in J}\left\langle L_{j} \eta, L_{j} \eta\right\rangle_{\mathcal{B}} \leq D\langle\eta, \eta\rangle_{\mathcal{B}} D^{*}, \forall \eta \in \mathcal{Y}
$$

Therefore,

$$
\begin{aligned}
& \left(A\langle\xi, \xi\rangle_{\mathcal{A}} A^{*}\right) \otimes\left(C\langle\eta, \eta\rangle_{\mathcal{B}} C^{*}\right) \\
& \leq \sum_{i \in I}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}} \otimes \sum_{j \in J}\left\langle L_{j} \eta, L_{j} \eta\right\rangle_{\mathcal{B}} \\
& \leq\left(B\langle\xi, \xi\rangle_{\mathcal{A}} B^{*}\right) \otimes\left(D\langle\eta, \eta\rangle_{\mathcal{B}} D^{*}\right), \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y}
\end{aligned}
$$

Then

$$
\begin{aligned}
& (A \otimes C)\left(\langle\xi, \xi\rangle_{\mathcal{A}} \otimes\langle\eta, \eta\rangle_{\mathcal{B}}\right)\left(A^{*} \otimes C^{*}\right) \\
& \leq \sum_{i \in I, j \in J}\left\langle T_{i} \xi, T_{i} \xi\right\rangle_{\mathcal{A}} \otimes\left\langle L_{j} \eta, L_{j} \eta\right\rangle_{\mathcal{B}} \\
& \leq(B \otimes D)\left(\langle\xi, \xi\rangle_{\mathcal{A}} \otimes\langle\eta, \eta\rangle_{\mathcal{B}}\right)\left(B^{*} \otimes D^{*}\right), \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y}
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
& (A \otimes C)\langle\xi \otimes \eta, \xi \otimes \eta\rangle_{\mathcal{A} \otimes \mathcal{B}}(A \otimes C)^{*} \\
& \leq \sum_{i \in I, j \in J}\left\langle T_{i} \xi \otimes L_{j} \eta, T_{i} \xi \otimes L_{j} \eta\right\rangle_{\mathcal{A} \otimes \mathcal{B}} \\
& \leq(B \otimes D)\langle\xi \otimes \eta, \xi \otimes \eta\rangle_{\mathcal{A} \otimes \mathcal{B}}(B \otimes D)^{*}, \forall \xi \in \mathcal{X}, \forall \eta \in \mathcal{Y} .
\end{aligned}
$$

Then for all $\xi \otimes \eta \in \mathcal{X} \otimes \mathcal{Y}$ we have

$$
\begin{aligned}
& (A \otimes C)\langle\xi \otimes \eta, \xi \otimes \eta\rangle_{\mathcal{A} \otimes \mathcal{B}}(A \otimes C)^{*} \\
& \leq \sum_{i \in I, j \in J}\left\langle\left(T_{i} \otimes L_{j}\right)(\xi \otimes \eta),\left(T_{i} \otimes L_{j}\right)(\xi \otimes \eta)\right\rangle_{\mathcal{A} \otimes \mathcal{B}} \\
& \leq(B \otimes D)\langle\xi \otimes \eta, \xi \otimes \eta\rangle_{\mathcal{A} \otimes \mathcal{B}}(B \otimes D)^{*}
\end{aligned}
$$

The last inequality is satisfied for every finite sum of elements in $\mathcal{X} \otimes_{a l g} \mathcal{Y}$ and then it's satisfied for all $z \in \mathcal{X} \otimes \mathcal{Y}$. It shows that $\left\{T_{i} \otimes L_{j}\right\}_{i \in I, j \in J}$ is an $*$-operator frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$-module $\mathcal{X} \otimes \mathcal{Y}$ with lower and upper $*$-operator frame bounds $A \otimes C$ and $B \otimes D$, respectively.

By the definition of $*$-frame operators S_{T} and S_{L}, we have:

$$
S_{T} \xi=\sum_{i \in I} T_{i}^{*} T_{i} \xi, \forall \xi \in \mathcal{X}
$$

and

$$
S_{L} \eta=\sum_{j \in J} L_{j}^{*} L_{j} \eta, \forall \eta \in \mathcal{Y}
$$

Therefore,

$$
\begin{aligned}
\left(S_{T} \otimes S_{L}\right)(\xi \otimes \eta) & =S_{T} \xi \otimes S_{L} \eta \\
& =\sum_{i \in I} T_{i}^{*} T_{i} \xi \otimes \sum_{j \in J} L_{j}^{*} L_{j} \eta \\
& =\sum_{i \in I, j \in J} T_{i}^{*} T_{i} \xi \otimes L_{j}^{*} L_{j} \eta \\
& =\sum_{i \in I, j \in J}\left(T_{i}^{*} \otimes L_{j}^{*}\right)\left(T_{i} \xi \otimes L_{j} \eta\right) \\
& =\sum_{i \in I, j \in J}\left(T_{i}^{*} \otimes L_{j}^{*}\right)\left(T_{i} \otimes L_{j}\right)(\xi \otimes \eta) \\
& \left.=\sum_{i \in I, j \in J}\left(T_{i} \otimes L_{j}\right)^{*}\right)\left(L_{i} \otimes L_{j}\right)(\xi \otimes \eta)
\end{aligned}
$$

Now by the uniqueness of $*$-frame operator, the last expression is equal to $S_{T \otimes L}(\xi \otimes$ $\eta)$. Consequently we have $\left(S_{T} \otimes S_{L}\right)(\xi \otimes \eta)=S_{T \otimes L}(\xi \otimes \eta)$. The last equality is satisfied for every finite sum of elements in $\mathcal{X} \otimes_{a l g} \mathcal{Y}$ and then it's satisfied for all $z \in \mathcal{X} \otimes \mathcal{Y}$. It shows that $\left(S_{T} \otimes S_{L}\right)(z)=S_{T \otimes L}(z)$. So $S_{T \otimes L}=S_{T} \otimes S_{L}$.

References

[1] A. Alijani, M.A. Dehghan, *-Frames in Hilbert C*-Modules, U.P.B. Sci. Bull., Series A, 73(4), 2011, 89-106.
[2] M. Azhini, N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C*algebras, Int. J. of Industrial Mathematics, 5(2), 2013, 109-118.
[3] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic fourier series, Trans. Amer. Math. Soc., 72, 1952, 341-366.
[4] R. El Jazzar, M. Rossafi, On Frames in Hilbert Modules Over Locally C* Algebras. International Journal of Analysis and Applications, 21, 2023, 130130.
[5] M. Fragoulopoulou, An introduction to the representation theory of topolog$i c a l *$-algebras, Schriftenreihe, Math. Inst., Univ. of Muenster, 2. Serie, 48, 1988, 1-81.
[6] M. Fragoulopoulou, Tensor products of enveloping locally C^{*}-algebras, Schriftenreihe Math. Inst., Univ. of Muenster, 3. Serie, 21, 1997, 1-81.
[7] M. Fragoulopoulou, Topological algebras with involution, North Holland, Amsterdam, 2005.
[8] A.Grossman, Y. Meyer, Painless nonorthogonal expansions, J. Math. Physics, 27, 1986, 1271-1283.
[9] A. Inoue, Locally C^{*}-algebra, Memoirs of the Faculty of Science, Kyushu University, Series A, Mathematics, 25.2, 1972, 197-235.
[10] M. Joita, On frames in Hilbert modules over pro-C*-algebras, Topol. Appl., 156, 2008, 83-92.
[11] E.C. Lance, Hilbert C^{*}-modules, A toolkit for operator algebraists, Cambridge University Press, 1995.
[12] A. Mallios, Topological algebras: Selected Topics, North Holland, Amsterdam, 1986.
[13] N.C. Phillips, Inverse limits of C^{*}-algebras, J. Operator Theory, 19, 1988, 159-195.
[14] N.C. Phillips, Representable K-theory for $\sigma-C^{*}$-algebras, K-Theory, 3(5), 1989, 441-478.

Roumaissae El Jazzar

Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco
E-mail: roumaissae.eljazzar@uit.ac.ma

Samir Kabbaj

Laboratory of Partial Differential Equations, Spectral Algebra and Geometry, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco
E-mail: samkabbaj@yahoo.fr
Mohamed Rossafi
Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, Fes, Morocco
E-mail: rossafimohamed@gmail.com
Received 17 May 2023
Accepted 05 July 2023

