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Weighted Sobolev-Morrey Regularity of Solutions
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Abstract. We establish a global generalized weighted Sobolev-MorreyW 1Mp,ϕ
w -regularity

for solutions to variational inequalities and obstacle problems for divergence form elliptic
systems with measurable coefficients in bounded non-smooth domains.
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1. Introduction and main result

Obstacle problems are a classical topic in the regularity theory of partial dif-
ferential equations. They arise naturally in the classical elasticity theory as one
of the simplest unilateral problems in the mechanics of elastic membranes. Appli-
cations of obstacle problems include fluid filtration in porous media, constrained
heating, elasto-plasticity, stopping time optimal control problem for Brownian
motion, phase transitions, groundwater hydrology, financial mathematics, etc.
We refer to [8, 11, 15, 16, 23, 29, 35] for a further discussion on the obstacle
problems and their applications.

Let Ω be a bounded domain in Rn with n ≥ 2. Given a vector-valued function

ψ = (ψ1, . . . , ψm) ∈ H1(Ω,Rm) and ψi ≤ 0 on ∂Ω, i = 1, . . . ,m, (1)

define the admissible set for the test functions:

A = {φ = (φ1, . . . , φm) ∈ H1
0 (Ω,Rm) : φi ≥ ψi a.e. in Ω, i = 1, . . . ,m}.

∗Corresponding author.

http://www.azjm.org 94 c© 2010 AZJM All rights reserved.



Weighted Sobolev-Morrey regularity of solutions to variational inequalities 95

Hereafter we adopt the standard summation convention on the repeated in-
dices, with 1 ≤ α, β ≤ n and 1 ≤ i, j ≤ m, where m ≥ 2.

We are interested in functions u : Ω→ Rm lying in A such that∫
Ω
Aαβij (x)Dβu

j ·Dα(φi − ui)dx ≥
∫

Ω
fαi ·Dα(φi − ui)dx (2)

for all φ ∈ A, where F = {fαi } ∈ L2(Ω,Rmn). Such a function u is called a weak
solution to the variational inequality (2).

Throughout this article, the tensor coefficients Aαβij : Rn → Rmn×mn are
assumed to be uniformly elliptic and uniformly bounded, namely, we suppose
that there exist positive constants λ and Λ such that

λ|ξ|2 ≤ Aαβij (x)ξiαξ
j
β and ‖Aαβij ‖L∞(Rn,Rmn×mn) ≤ Λ (3)

for all matrices ξ ∈ Rmn and for almost every point x ∈ Rn.
According to classical theory of the variational inequalities ([14, 23]), there

exists a unique weak solution u ∈ A of (2) satisfying the estimate

‖Du‖L2(Ω,Rnm) ≤ c
(
‖F‖L2(Ω,Rnm) + ‖Dψ‖L2(Ω,Rnm)

)
with a positive constant c depending only on λ,Λ,m, and the Lebesgue measure
|Ω| of the underlying domain Ω.

The classical Morrey spaces Lp,λ were introduced by Morrey [28] to study the
local behavior of solutions to second-order elliptic partial differential equations.
Moreover, various Morrey spaces are defined in the process of study. The first
author, Mizuhara and Nakai [17, 27, 30] introduced generalized Morrey spaces
Mp,ϕ(Rn) (see also [1, 18, 37]). Komori and Shirai [24] defined weighted Mor-
rey spaces Lp,κ(w). In [19], the first author defined the generalized weighted
Morrey spaces Mp,ϕ

w (Rn), which could be viewed as extension of both Mp,ϕ(Rn)
and Lp,κ(w), and proved the boundedness of the classical operators and their
commutators in Mp,ϕ

w (see also [12, 21, 22, 31]).
The main goal of this article is to derive regularity estimates for the weak

solution to the variational inequality (2) for divergence form elliptic systems with
measurable coefficients in non-smooth domains in the framework of Mp,ϕ

w (Ω). In
that sense, they provide a natural extension of the results in [2, 5, 7, 9, 25]. We
are dealing with differential operators having only measurable coefficients. More
precisely, the associated coefficients are only measurable in one variable, allowing
this way quite arbitrary discontinuities in that direction, while the coefficients are
averaged in the sense of small BMO with respect to the remaining n−1 variables.
This is a typical situation closely related to the equilibrium equations of linearly
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elastic laminates and composite materials which have been widely applied to
various fields, see [10, 26]. Regarding the non-smooth domains considered here,
we suppose these have boundaries which are flat in the sense of Reifenberg [34].
This means that the boundary is well approximated by hyperplanes at each point
and at each scale, and is a sort of minimal regularity of the boundary guaranteeing
the main results of the geometric analysis continue to hold true in the non-smooth
domain considered. For instance, C1-smooth or Lipschitz continuous boundaries
belong to that category, but the class of Reifenberg flat domains extends beyond
these common examples and contains domains with rough fractal boundaries such
as the von Koch snowflake.

Under additional regularity assumptions on the coefficients in (2) and a suit-
able geometric condition on the boundary of Ω, we will show that for all p ∈ (1,∞)

|Du|2 ∈Mp,ϕ
w (Ω)

provided

w ∈ Ap, |F |2 ∈Mp,ϕ
w (Ω) and |Dψ|2 ∈Mp,ϕ

w (Ω).

In order to state the additional hypotheses on Aαβij and ∂Ω, we need to intro-
duce the following notations:

(1) The open ball in Rn centered at a point y and of radius r > 0 :

B ≡ Br(x) = {y ∈ Rn : |x− y| < r}

with Lebesgue measure |Br| = c(n)rn. For each x ∈ Ω we write

Ωr = Br(x) ∩ Ω, 2Br = B2r(x) and {(2Br) = Rn \ 2Br.

The open ball in Rn−1 centered at y′ = (y1, . . . , yn−1) and of radius r > 0:

B′r(y) = {x′ = (x1, . . . , xn−1) ∈ Rn−1 : |x′ − y′| < r}

with |B′r| = c(n)rn−1.

(2) The elliptic cylinder in Rn centered at y = (y′, yn) ∈ Rn−1 × R and of
size r > 0 is defined by

Qr(y) = B′r(y
′)× (yn − r, yn + r)

with |Cr| = c(n)rn. If the center is the origin 0 = (0′, 0), then we denote Qr(0) =
B′r(0

′)× (−r, r) by Qr = B′r × (−r, r) for the sake of simplicity.
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(3) For each fixed xn ∈ R and for each non empty bounded subset E′ of
Rn−1, the integral average of a function g(·, xn) over E′ is denoted by

ḡE′(xn) =

∮
E′
g(x′, xn)dx′ =

1

|E′|

∫
E′
g(x′, xn)dx′,

where |E′| stands for the (n− 1)-dimensional Lebesgue measure of E′.
The main assumptions on the data of Problem (2) are given in the next

definition.

Definition 1. We say that (Aαβij ,Ω) is (δ,R)-vanishing of codimension one if for
every point y ∈ Ω and for every number r ∈ (0, 3R] with

dist(y, ∂Ω) = min
x∈∂Ω

dist(y, x) >
√

2r,

there exists a coordinate system depending on y and r with variables still denoted
by x = (x′, xn) ∈ Rn−1 ×R, so that in this new coordinate system y is the origin
and ∮

Q√2r

∣∣∣Aαβij (x′, xn)−Aαβij B′√
2r

(xn)
∣∣∣2dx ≤ δ2.

Further on, for every point y ∈ Ω and for every number r ∈ (0, 3R] with

dist(y, ∂Ω) = min
x∈∂Ω

dist(y, x) = dist(y, x0) ≤
√

2r,

for some x0 ∈ ∂Ω, there exists a coordinate system depending on y and r, whose
variables we still denote by x = (x′, xn), so that in this new coordinate system
x0 is the origin,

Q3r ∩ {(x′, xn) : xn > 6rδ} ⊂ Q3r ∩ Ω ⊂ Q3r ∩ {(x′, xn) : xn > −6rδ} (4)

and ∮
Q+

3r

|Aαβij (x′, xn)−Aαβij B′3r
(xn)|2dx ≤ δ2.

Some remarks in order to clarify the notion just introduced. If (Aαβij ,Ω) is
(δ,R) -vanishing of codimension 1, then, for each point and for each small scale,
there is a coordinate system such that the coefficients have small bounded mean
oscillation (briefly BMO) in the x′-directions with no regularity required with
respect to xn, that is, the coefficients can be only measurable in xn.

For what concerns the condition (4), it means that ∂Ω satisfies the so-called
(δ,R)-Reifenberg flat condition (see [34, 38]). Moreover, it implies (cf. [6, 32, 33])
that there is a constant τ = τ(δ, n, ∂Ω) > 0 such that

τ |Qr(y0)| ≤ |Qr(y0) ∩ Ω| ≤ (1− τ)|Qr(y0)|
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for each cylinder Qr(y0) with r > 0 and y0 ∈ ∂Ω.

The constant δ will be determined later to belong to (0, 1/8). Here we would
like to emphasize only that δ is invariant under a scaling (see Lemma 11 below).
Moreover, by means of the scaling invariant property of Problem (2), the constant
R can be any constant greater than or equal to 1.

Finally, the numbers
√

2r and
√

3r are selected artificially, since we need
to take the size of a cylinder Qr(y) large enough to contain its rotation in any
direction.

We give our main result in the following theorem.

Theorem 2. Assume that inequalities (3) are satisfied and u ∈ H1
0 (Ω,Rn) is

a weak solution to the variational inequality (2). For any given p ∈ (1,∞), let
w ∈ Ap, |F |2 ∈ Mp,ϕ

w (Ω) and |Dψ|2 ∈ Mp,ϕ
w (Ω). Then there exists a constant

δ = δ(λ,Λ,m, n, p, [w]p,Ω) > 0 such that if (Aαβij ,Ω) is (δ,R)-vanishing of codi-

mension 1, then |Du|2 ∈Mp,ϕ
w (Ω) with the estimate

‖|Du|2‖Mp,ϕ
w (Ω) ≤ C

(
‖|F |2‖Mp,ϕ

w (Ω) + ‖|Dψ|2‖Mp,ϕ
w (Ω)

)
, (5)

where C is a positive constant depending only on λ, Λ, m, n, p, [w]p and Ω.

This paper is organized as follows. In section 2, we present some auxiliary
results related to the Hardy-Littlewood maximal function, measure theory and
the Krylov-Safonov type covering argument. In section 3, we prove the global
generalized weighted Sobolev-Morrey W 1Mp,ϕ

w -regularity for solutions to varia-
tional inequalities and obstacle problems for divergence form elliptic systems with
measurable coefficients in bounded non-smooth domains (Theorem 2).

2. Preliminaries

In this section, we present several preliminary results to be used for the
rest of this article. Firstly, let us recall the definition of the Muckenhoupt classes
Ap weights. A positive locally integrable function w on Rn is said to be a weight.
The weight w = w(x) belongs to the Muckenhoupt class Ap(Rn), 1 < p <∞, if

[w]p := sup
( 1

|Q|

∫
Q
w(x)dx

)( 1

|Q|

∫
Q
w(x)

−1
p−1dx

)p−1
<∞,

where the supremum is taken over all cubes Q ⊂ Rn. A typical example of
Muckenhoupt class Ap is given by the function

ws(x) = |x|s, x ∈ Rn,
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and it is easy to see that ws ∈ Ap when −n < s < n(p− 1).
Later on, for any bounded measurable set E ⊂ Rn and a weight w, we define

the weighted Lebesgue measure w(E) by

w(E) =

∫
E
w(x)dx.

The next lemma plays an important role in what follows and the correspond-
ing proof can be found in [36, 39].

Lemma 3. Let w ∈ Ap(Rn) for some 1 < p < ∞. Then there exist positive
constants c1 and k ∈ (0, 1), depending only on n, p and [w]p, such that

1

c1

( |E|
|Q|

)p
≤ w(E)

w(Q)
≤ c1

( |E|
|Q|

)k
(6)

for every cube Q ⊂ Rn and every measurable subset E of Q.

It is worth noting that this result relies on a reverse Holder type inequality.
Moreover, (6) implies that a weight w ∈ Ap has the doubling property, that is,

w(2Q) ≤ c2w(Q), c2 = c2(n, p, [w]p) > 0.

Given a weight w ∈ Ap for some 1 < p < ∞, the weighted Lebesgue space
Lpw(Ω) is defined as the collection of all measurable functions g : Ω→ R satisfying

‖g‖Lp
w(Ω) =

(∫
Ω
|g(x)|pw(x)dx

) 1
p
<∞.

Definition 4. Let Ω be an open domain in Rn and p ∈ (1,∞). A function
f ∈ Lpw(Ω), w ∈ Ap, belongs to the generalized weighted Morrey space Mp,ϕ

w (Ω) if
the following norm is finite:

‖f‖Mp,ϕ
w (Ω) = sup

x∈Ω,r>0

1

ϕ(x, r)

( 1

w(Br(x))

∫
Ωr

|f(x)|pw(x)dx
) 1

p
<∞, (7)

where ϕ is a measurable non-negative function defined on Ω (see [19]).

If w ≡ 1, then Mp,ϕ
w (Ω) ≡ Mp,φ(Ω) with φ(Br(x)) = ϕ(Br(x))prn. If ϕ ≡

r(λ−n)/p and w ≡ 1, then Mp,ϕ
w (Ω) ≡ Lp,λ(Ω), λ ∈ (0, n). If ϕ ≡ w−1/p, then

Mp,ϕ
w (Ω) ≡ Lpw(Ω).

The main components of our approach are the Hardy-Littlewood maximal
operator and the Krylov-Safonov type covering lemma. In the following, we give
the definition of the Hardy-Littlewood maximal operator M.
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Definition 5. Given a locally integrable function g defined in Rn, the maximal
function Mg of g is

(Mg)(x) = sup
r>0

∮
Qr(x)

|g(y)|dy = sup
r>0

1

|Qr(x)|

∫
Qr(x)

|g(y)|dy.

If g is defined on a bounded subset of Rn, then

Mg =Mg,

where g is the zero extension of g from the bounded set to Rn.

The weak type estimate

|{x ∈ Rn : (Mg)(x) > λ}| ≤ c(n)

λ

∫
Rn

|g(x)|dx

is well known for the maximal operator M.

Lemma 6. (see [36, 39]). Suppose that w ∈ Ap for some 1 < p < ∞ and
g ∈ Lpw(Rn). Then Mg ∈ Lpw(Rn) and there is a constant c3 = c3(n, p, [w]p) > 0
such that

1

c3
‖g‖Lp

w(Rn) ≤ ‖Mg‖Lp
w(Rn) ≤ c3‖g‖Lp

w(Rn). (8)

In some content, the condition w ∈ Ap is necessary and sufficient for the
validity of the inequality (8). So, we expect that the Muckenhoupt Ap class
is optimal, in terms of weights, for the Calderón-Zygmund type estimates here
obtained.

In [19], the following maximal inequality in weighted generalized Morrey
spaces Mp,ϕ

w under quite general condition on the pair (ϕ,w) was proved.

Theorem 7. [19] Let w ∈ Ap, p ∈ (1,∞) and (ϕ1, ϕ2) be a couple of non-negative
measurable functions defined on Rn×R+. Assume that there is a positive constant
c1 independent on y and r such that

sup
r<s<∞

ess inf
s<σ<∞

ϕ1(Bσ(y))w
(
Bσ(y)

) 1
p

w
(
Bs(y)

) 1
p

≤ c1 ϕ2(Br(y)) . (9)

Then the operator M is bounded from Mp,ϕ1
w to Mp,ϕ2

w and

‖Mf‖Mp,ϕ2
w (Rn) ≤ c‖f‖Mp,ϕ1

w (Rn) .
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Corollary 8. (Maximal inequality) [19] Let w ∈ Ap, p ∈ (1,∞) and ϕ satisfy

sup
r<s<∞

ess inf
s<σ<∞

ϕ(Bσ(y))w
(
Bσ(y)

) 1
p

w
(
Bs(y)

) 1
p

≤ c1 ϕ(Br(y)) (10)

with c1 independent of r and y. Then there is a constant cp > 0 such that

‖f‖Mp,ϕ
w (Rn) ≤ ‖Mf‖Mp,ϕ

w (Rn) ≤ cp‖f‖Mp,ϕ
w (Rn), ∀ f ∈Mp,ϕ

w (Rn) .

Impose in addition a kind of monotonicity condition on ϕ, precisely,

ϕ(Br(y))pw
(
Br(y)

)
≤ ϕ(Bs(z))

pw
(
Bs(z)

)
for all Br(y) ⊂ Bs(z) . (11)

This implies that for a given Ω ⊂ Rn, the inequality

sup
y∈Ω
r>0

w
(
Br(y) ∩ Ω

)
ϕ
(
Br(y)

)p
w
(
Br(y)

) ≤ c2 (12)

holds with c2 = c2(n, q, κ, ϕ,w,Ω) (see [20]).
We will need also the following standard measure theory results regarding

weighted spaces.

Lemma 9. (see [13]). Let f ∈ L1(Ω) be a nonnegative function, w be an Aq-
weight, q ∈ (1,∞), ϕ be a weight satisfying (9), and θ > 0 and λ > 1 be constants.
Then f ∈M q,ϕ

w (Ω) if and only if

S := sup
y∈Ω, r>0

∑
k≥1

λkqw({x ∈ Ωr : f(x) > θλk})
ϕ(Br(y))qw(Br(y))

<∞.

Moreover,
1

c4
S ≤ ‖f‖q

Mq,ϕ
w (Ω)

≤ c4(1 + S),

for some universal constant c = c(θ, λ, q, k, ϕ,w,Ω).

Lemma 10. (see [5]). Let Ω be a bounded and (δ, 1)-Reifenberg flat set in Rn
and let C and D be measurable sets such that C ⊂ D ⊂ Ω. Let w ∈ Ap for some
p ∈ (1,∞) and suppose there exists a small constant ε ∈ (0, 1) such that

w
(
C ∩Q1(y)

)
< εw(Q1(y))

for each y ∈ Ω. Assume further that for each y ∈ Ω and r ∈ (0, 1) one has

Qr(y) ∩ Ω ⊂ D whenever w(C ∩Qr(y)) ≥ εw(Qr(y)).
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Then

w(C) ≤ c5εw(D)

with a constant c5 depending only on δ, n, p, and [w]p. Moreover, taking δ in the
range (0, 1/8), the constant c5 may be bounded by a uniform constant independent
of δ.

We will use the fact that the obstacle problem here considered is invariant
under scaling and normalization in the proof of our main theorem. The corre-
sponding properties follow by straightforward computations.

Lemma 11. [5] Let u ∈ A be the weak solution to the variational inequality

(2). Assume that (Aαβij ,Ω) is (δ,R)-vanishing of codimension 1. Fix M > 1 and
0 < ρ < 1, and define the rescaled maps

Ãαβij (x) = Aαβij (ρx), ũ(x) =
u(ρx)

Mρ
, F̃ (x) =

F (ρx)

M
, ψ̃(x) =

ψ(ρx)

Mρ
,

and the set Ω̃ =
{

1
ρx : x ∈ Ω

}
.

Then

(1) Ãαβij satisfies the basic condition (1) with the same constants λ and Λ.

(2) (Ãαβij , Ω̃) is
(
δ, Rρ

)
-vanishing of codimension 1.

(3) ũ ∈ Ã =
{
φ ∈ H1

0 (Ω̃,Rm) : φi ≥ ψ̃i a.e. in Ω̃ for each i = 1, . . . ,m
}

is the weak solution to the variational inequality∫
Ω̃
Ãαβij (x)Dβũ

j ·Dα(φ̃i − ũi)dx ≥
∫

Ω̃
f̃αi ·Dα(φ̃i − ũi)dx, ∀φ̃ ∈ Ã.

3. Weighted Sobolev-Morrey W 1Mp,ϕ
w estimates

In this section, we will obtain the optimal weighted Sobolev-Morrey
W 1Mp,ϕ

w regularity for the weak solution to the variational inequality (2) based
on Lemma 10. So, let u ∈ A be the weak solution to (2) and, for the fixed
p ∈ (1,∞), let w, F and ψ satisfy

w ∈ Ap, |F |2 ∈Mp,ϕ
w (Ω) and |Dψ|2 ∈Mp,ϕ

w (Ω).

In what follows, we will use the letter c to denote a constant that can be explicitly
computed in terms of known quantities such as λ, Λ, m, n, p, and [w]p.

Now, in order to apply Lemma 10 to our situation, we need the following
result.
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Lemma 12. [5] There exists a constant N = N(λ,Λ,m, n) > 1 such that for each

0 < ε < 1 one can select a small δ = δ(ε, λ,Λ,m, n) > 0 such that if (Aαβij ,Ω) is
(δ,R)-vanishing of codimension 1 and if Qr(y), with y ∈ Ω and r > 0, satisfies

w
(
{x ∈ Ω :M(|Du|2) > N2} ∩Qr(y)

)
≥ εw(Qr(y)) (13)

for such a small δ, then

Ωr(y) ⊂ {x ∈ Ω :M(|Du|2) > 1} ∪ {x ∈ Ω :M(|F |2) > δ2}
∪ {x ∈ Ω :M(|Dψ|2) > δ2}, (14)

where Ωr(y) = Qr(y) ∩ Ω.

Fix now ε > 0 and take δ and N as given in Lemma 12. Based on Lemma 10,
we will obtain a power decay of

w({x ∈ Ω :M(|Du|2) > N2}).

Lemma 13. [5] Suppose that (Aαβij ,Ω) is (δ,R)-vanishing of codimension 1 and
set ε∗ = c5ε with c5 given by Lemma 10.

Then for each positive integer k, we have

w({x ∈ Ω :M(|Du|2) > N2k}) ≤ εk∗w({x ∈ Ω :M(|Du|2) > 1})

+
k∑
i=1

εi∗w({x ∈ Ω :M(|F |2) > δ2N2(k−i)})

+

k∑
i=1

εi∗w({x ∈ Ω :M(|Dψ|2) > δ2N2(k−i)}).

Now we can give the proof of Theorem 2.
Proof of Theorem 2. We apply Lemma 9 with g =M(|Du|2), θ = N and

µ = 1. Thus,

∞∑
k=1

Nkpw({x ∈ Ω :M(|Du|2) > N2k})

Lemma 13
≤

∞∑
k=1

Nkpεk∗w({x ∈ Ω :M(|Du|2) > 1})

+

∞∑
k=1

Nkp
k∑
k=1

εi∗w({x ∈ Ω :M(|F |2) > δ2N2(k−i)})
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+

∞∑
k=1

Nkp
k∑
k=1

εi∗w({x ∈ Ω :M(|Dψ|2) > δ2N2(k−i)})

≤
∞∑
k=1

(Npε∗)
kw(Ω)

+

∞∑
k=1

(Npε∗)
i
( ∞∑
k=i

N (k−i)pw
(
{x ∈ Ω :M(|F |2) > δ2N2(k−i)}

))
+
∞∑
k=1

(Npε∗)
i
( ∞∑
k=i

N (k−i)pw
(
{x ∈ Ω :M(|Dψ|2) > δ2N2(k−i)}

))
Lemma 9
≤ C

(
w(Ω) + ‖M(|F |2)‖p

Mp,ϕ
w (Ω)

+ ‖M(|Dψ|2)‖p
Mp,ϕ

w (Ω)

) ∞∑
k=1

(Npε∗)
k

Lemma 6
≤ C

(
w(Ω) + ‖|F |2‖p

Mp,ϕ
w (Ω)

+ ‖|Dψ|2‖p
Mp,ϕ

w (Ω)

) ∞∑
k=1

(Npε∗)
k

for some universal constant C = C(δ, λ,Λ,m, n, p, [w]p) > 0.
Select now a small enough ε > 0 in order to have Npε∗ < 1. In view of Lemma

12, we can find a small constant δ = δ(λ,Λ,m, n, p, [w]p) such that

∞∑
k=1

Nkpw({x ∈ Ω :M(|Du|2) > N2k})

≤ C
(
w(Ω) + ‖|F |2‖p

Mp,ϕ
w (Ω)

+ ‖|Dψ|2‖p
Mp,ϕ

w (Ω)

)
whenever (Aαβij ,Ω) is (δ,R)-vanishing of codimension 1 with the fixed small δ.
Therefore, it follows from Lemmas 6 and 9 that

‖|Du|2‖p
Mp,ϕ

w (Ω)
≤ C

(
w(Ω) + ‖|F |2‖p

Mp,ϕ
w (Ω)

+ ‖|Dψ|2‖p
Mp,ϕ

w (Ω)

)
,

which implies the desired estimate (5) by virtue of the Banach inverse mapping
theorem or after normalization (see [3]). This completes the proof of the theorem.
J

Remark 14. Note that Theorem 2 is proved in [4] for the weighted Sobolev W 1,p

case.
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