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On a Boundary Value Problem for Operator-Differential
Equations in Hilbert Space
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Abstract. In this paper, we study regular and Fredholm solvability of a Neumann type
boundary value problem for a second order elliptic type equation with operator coeffi-
cients for a separable Hilbert space on a finite domain. The conditions of regular and
Fredholm solvability for the given problem in terms of only the coefficients of the equa-
tion are found. The estimates for intermediate derivatives operators are obtained. These
estimates determine the solvability conditions for our problem. Note that the considered
operator equations have variable coefficients.
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1. Introduction

Solvability of operator-differential equations has been studied by many au-
thors, since they have significant applications in various problems of mathemati-
cal analysis, differential equations and in other fields. The Cauchy problem was
first studied by E. Hille, K. Iosido, T. Kato and others. Later, the boundary
value problems for elliptic operator-differential equations have been studied by
A.A. Dezin [6], V.I. Gorbachuk and M.L. Gorbachuk [11], M.G. Krein [12], S.Ya.
Yakubov [21] and others. Boundary value problems for operator-differential equa-
tions on a semi-axis have been considered by M.G.Gasymov [8], A. Dubinsky [7],
S.S. Mirzoev [19], A.A. Shkalikov [20] and other authors. Boundary value prob-
lems in an infinite domain with discontinuous coefficients A.R. Aliyev [4, 5], G.M.
Gasymova [9, 10], S.S. Mirzoev, A.R. Aliev, L.M. Rustamova [17, 18], S.S. Mir-
zoev, A.R. Aliyev, G.M. Gasimova [16].
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In a finite domain, the boundary value problems have been studied, for ex-
ample, by S.S. Mirzoev and G.A. Agaeva [14, 15], G.A. Agaeva [1, 2, 3].

Let H be a separable Hilbert space with scalar derivatives (x, y), C be a
positive-definite operator in H with domain of definition D(C). Then the domain
of definition of the operator Cγ becomes a Hilbert space Hγ with scalar product
(x, y)γ = (Cγx,Cγy), γ ≥ 0. For γ = 0 we assume that H0 = H and (x, y)0 =
(x, y)

Denote by L2((0, 1) : H) a Hilbert space of functions determined almost
everywhere in (0, 1) with

‖f‖L2((0,1):H) =

(∫ 1

0
‖f(t)‖2 dt

)1/2

<∞.

Following [13], we determine the Hilbert space

W 2
2 ((0, 1) : H) = u : C2u ∈ L2((0, 1) : H), u

′′ ∈ L2((0, 1) : H)

with the norm

‖u‖W 2
2 ((0,1):H) =

(∥∥∥u′′∥∥∥2
L2((0,1):H)

+ ‖Cu‖2L2((0,1):H)

)1/2

.

Note that the following assertions are true for the functions from W 2
2 ((0, 1) : H)

[13]:

1◦ For any u ∈ W 2
2 ((0, 1) : H) we have the following inequality (theorem on

intermediate derivatives):

||Cu′||L2((0,1):H) ≤ const||u||W 2
2 ((0,1):H).

2◦ For any t0 ∈ [0, 1], there exist u(t0) and u′(t0). Moreover, u(t0) ∈ H3/2,
u′(t0) ∈ H1/2 and we have the inequality (the trace theorem)

||u(t0)||3/2 ≤ const||u||W 2
2 ((0,1):H),

and

||u′(t0)||1/2 ≤ const||u||W 2
2 ((0,1):H).

We determine the subspace
◦
W

2

2((0, 1) : H) of the space W 2
2 ((0, 1) : H) as follows:

◦
W

2

2((0, 1) : H) = {u : u ∈W 2
2 ((0, 1) : H) , u′(0) = 0, u′(1) = 0}.
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It follows from the trace theorem that
◦
W

2

2((0, 1) : H) is a complete Hilbert space.
In the Hilbert space H we consider the equation

L(d/dt)u(t) = −u′′(t) + ρ(t)A2u(t)+

+(A1 + T1)u
′(t) + (A2 + T2)u(t) = f(t), t ∈ (0, 1) (1)

with boundary conditions

u′(0) = 0 , u′(1) = 0, (2)

where the operator coefficients satisfy the following conditions:
1) A is a normal operator with completely continuous inverse A−1, whose spec-
trum is contained in the angular sector

Sε = {λ : | arg λ| ≤ ε, 0 ≤ ε < π/2 } ;

2) ρ(t) is a numeric function determined almost everywhere in the interval (0, 1),
is measurable and bounded. Moreover, α ≤ ρ(t) ≤ β, where α > 0, β > 0 ;
3) the operators B1 = A1A

−1 and B2 = A2A
−2 are bounded in H;

4) the operators K1 = T1A
−1 and K2 = T2A

−2 are completely continuous in H.
Condition 1) implies that the operator can be represented in the form of

A = UC, where C is a positive-definite operator, and U is a unitary operator.
Moreover,

Cx =

∞∑
k=1

µk(x, ek)ek, Ux =

∞∑
k=1

eiϕk(x, ek)ek,

where

Aek = λkek, λk = µke
iϕk , |λk| = µk, λk = µke

iϕk , ϕk = arg λk ∈ Sε,

k = 1, 2, ..., µ1 ≤ µ2 ≤ ... ≤ µk... .

Definition 1. If for f(t) ∈ L2((0, 1) : H) there exists u(t) ∈ W 2
2 ((0, 1) : H),

satisfying the equation (1) almost everywhere in the interval (0, 1), then u(t) is
called a regular solution of the equation (1).

Definition 2. If for any f(t) ∈ L2((0, 1) : H) there exists a regular solution
u(t) of the equation (1) satisfying boundary conditions (2) in the sense of con-
vergence

lim
t→0
||u′(t)||1/2 = 0 , lim

t→+0
||u′(1− t)||1/2 = 0 (3)

and the estimate

||u(t)||W 2
2 ((0,1):H) ≤ const||f ||L2((0,1):H)

, (4)

then the problem (1)–(2) is called regularly solvable.
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Definition 3. If there exist finite-dimensional spaces W̃ 2
2 ((0, 1) : H) ⊂

◦
W

2

2((0, 1) :
H) and L̃2((0, 1) : H) ⊂ L2((0, 1) : H), moreover, if dim W̃ 2

2 ((0, 1) : H) =
dim L̃2((0, 1) : H) and for any f(t) ∈ L2((0, 1) : H)ΘL̃2((0, 1) : H) there exists
regular solution of equation (1) u(t) ∈ W̃ 2

2 ((0, 1) : H) satisfying the boundary
conditions in the sense of (3) and the estimate (4) holds, then the problem (1),
(2) is called Fredholm solvable.

In the space
◦
W

2

2((0, 1) : H) we define the following operators that act in
L2((0, 1):

Lu = P0u+ P1u+ Tu, u ∈
0
W

2

2((0, 1) : H),

where

P0u = −u′′ + ρ(t)A2u, u ∈
0
W

2

2((0, 1) : H),

P1u = A1u
′ +A2u, u ∈

0
W

2

2((0, 1) : H),

Tu = T1u
′ + T2u, , u ∈

0
W

2

2((0, 1) : H).

Note that from the theorem on intermediate derivatives it follows that each of

these operators is continuous in u ∈
0
W

2

2((0, 1) : H). Indeed,

‖P0u‖L2((0,1):H) ≤ ‖u
′′‖+ β‖A2u‖L2((0,1):H) ≤ const‖u‖W 2

2 ((0,1):H)

‖P1u‖L2((0,1):H) ≤ ‖A1u
′‖+ ‖A2u

′‖L2((0,1):H) ≤

≤ ‖A1A
−1‖ ‖Au′‖L2((0,1):H) + ‖A2A

−2‖ ‖A2u‖L2((0,1):H) =

= ‖B1‖ ‖Cu′‖L2((0,1):H) + ||B2|| ||C2u||L2((0,1):H) ≤ const‖u‖W 2
2 ((0,1):H)

‖Tu‖L2((0,1):H) ≤ ‖K1‖ ‖Cu′‖L2((0,1):H)+‖K2‖||C2u||L2(0,1):H) ≤ const‖u‖W 2
2 ((0,1):H).

Thus, the solvability of the problem (1),(2) is reduced to the solvability of the
equation

Lu = P0u+ P1u+ Tu = f,

where f(t) ∈ L2((0, 1) : H), while u(t) ∈
0
W

2

2((0, 1) : H).
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2. Some results

Theorem 1. Let the conditions 1) be fulfilled. Then for all u ∈
0
W

2

2((0, 1) : H)
we have the inequalities∥∥Au′∥∥

L2((0,1):H)
≤ d1(ε) ‖P0u‖L2((0,1):H) (5)

and ∥∥A2u
∥∥
L2((0,1):H)

≤ d0(ε) ‖P0u‖L2((0,1):H) , (6)

where

d1(ε) =
1

2
√
α

1

cosε
(0 ≤ ε < π/2) , d2(ε) =

{
1
α , 0 ≤ ε ≤ π/4
1

α
√
2

1
cosε , π/4 ≤ ε < π/2.

(7)

Proof. Denote f = P0u. Then

||ρ−1/2f ||2L2((0,1):H) = || − ρ−1/2u′′ + ρ1/2A2u||2L2((0,1):H) =

= || − ρ−1/2u′′ ||2L2((0,1):H) + ||ρ1/2A2u||2L2((0,1):H) − 2Re(u
′′
, A2u)L2((0,1):H). (8)

On the other hand, considering u ∈
0
W

2

2((0, 1) : H) (u′(0) = u′(1) = 0), after
integrating by parts we have

(u
′′
, A2u)L2((0,1):H) =

∫ 1

0
(u
′′
(t), A2u(t))dt =

= (C1/2u′(t)2, U2C3/2u(t))|10 − (A∗u′, Au′)L2((0,1):H) = −(A∗u′, Au′)L2((0,1):H).

Then it follows from the equality (8) that

||ρ−1/2f ||2L2((0,1):H) = ||ρ−1/2u′′||2L2((0,1):H)+

+||ρ1/2A2u||2L2((0,1):H) + 2Re(A∗u′, Au′)L2((0,1):H).

Now, using spectral expansion of the operator A , we obtain

Re(A∗u′, Au′)L2((0,1):H) ≥ cos 2ε||Cu′||2L2((0,1):H) = cos 2ε||Au′||2L2((0,1):H).

Then the equality (8) yields

‖ρ−1/2f‖2L2((0,1):H) ≥ ‖ρ
−1/2u

′′‖2L2((0,1):H)+
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+‖ρ1/2A2u‖L2((0,1):H) + 2 cos 2ε‖Au′‖L2((0,1):H). (9)

Since u′(0) = u′(1) = 0, after integration by parts we have:

‖Au′‖2L2((0,1):H) = ‖Cu′‖2L2((0,1):H) = (Cu′, Cu′)L2((0,1):H) =

=
(
C3/2u(t), C1/2u′(t)|10 − (u

′′
, C2u)L2((0,1):H)

)
=

= −
(
u
′′
, C2u

)
L2((0,1):H)

= −(ρ−1/2u
′′
, ρ1/2C2u)L2((0,1):H) ≤

≤ 1

2

(
‖ρ−1/2u′′‖2L2((0,1):H) + ‖ρ1/2C2u‖2L2((0,1):H)

)
=

=
1

2

(
‖ρ−1/2u′′‖2L2((0,1):H) + ‖ρ1/2A2u||2L2((0,1):H)

)
.

Taking into account (9) in the last inequality, we obtain

‖Au′‖2L2((0,1):H) ≤
1

2

(
‖ρ−1/22f‖2L2((0,1):H) − 2 cos 2ε‖Au′‖2L2((0,1):H)

)
or

(1 + cos 2ε)||Au′||2L2((0,1):H) ≤
1

2
(‖ρ−1/2f‖2L2((0,1):H),

i.e.

||Au′||2L2((0,1):H) ≤
1

4 cos2 ε
‖ρ−1/2f‖2L2((0,1):H) (10)

or

||Au′||L2((0,1):H) ≤
1

2 cos ε
||ρ−1/2f ||L2((0,1):H) ≤

1

2
√
α cos ε

‖f‖ =

=
1

2
√
α cos ε

‖P0u‖L2((0,1):H) (0 ≤ ε < π/2).

Inequality (5) is proved. J

Now we prove the inequality (6).
a) Let 0 ≤ ε ≤ π/4 (cos 2ε ≥ 0). Then from (9) we obtain

‖ρ1/2A2u‖2L2((0,1):H) ≤ ||ρ
−1/2f ||2L2((0,1):H),

i.e.

‖A2u‖L2((0,1):H) = ‖ρ−1/2ρ1/2A2u‖L2((0,1):H) ≤
1√
α
‖ρ1/2A2u‖L2((0,1):H) ≤

≤ 1√
α
‖ρ−1/2f‖L2((0,1):H)) ≤

1

α
‖f‖L2((0,1):H),
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i.e. inequality (6) for 0 ≤ ε ≤ π/4 is proved.
b) Let π/4 < ε ≤ π/2 (cos 2ε ≤ 0). Then inequality (9) yields

‖ρ1/2A2u‖2L2((0,1):H) ≤ ‖ρ
−1/2f‖2L2((0,1):H) − 2 cos 2ε‖Au′‖2L2((0,1):H).

Since α||A2u||2L2((0,1):H) ≤ ||ρ
1/2A2u||2L2((0,1):H) and cos 2ε ≤ 0, from inequality

(5) we obtain

α‖A2u‖2L2((0,1):H) ≤ ‖ρ
−1/2f‖2L2((0,1):H) −

2 cos 2ε

4α cos2 ε
‖f‖2L2((0,1):H) ≤

≤ 1

α
‖f‖2L2((0,1):H) −

cos 2ε

2α cos2 ε
‖f‖2L2((0,1):H) =

1

2α cos2 ε
‖f‖2L2((0,1):H)

or

||A2u||2L2((0,1):H) ≤
1

2α2 cos2 ε
||f ||2L2((0,1):H),

i.e.

||A2u||L2((0,1):H) ≤
1

α
√

2 cos ε
||f ||L2((0,1):H).

The theorem is proved.

3. Basic results

Here we show the conditions for regular and Fredholm solvability of problem
(1),(2).

Theorem 2. The operator P0 :
0

W 2
2 ((0, 1) : H)→ L2((0, 1) : H) is isomorphic.

Show that KerP0 = {0}. Indeed, if P0u = 0, then from the inequality (6) it
follows that A2u = 0, i.e. u = 0. We now show that for any f ∈ L2((0, 1) : H) the
equation P0u = f has a solution. If we consider the operator P0 in L2((0, 1) : H),

then it is obvious that D(P0) =
0

W 2
2 ((0, 1) : H) and its adjoint operator has the

domain of definition
0

W 2
2 ((0, 1) : H), and for u ∈

0

W 2
2 ((0, 1) : H)

P ∗0 u = −u′′ + ρ(t)A∗2u, u ∈
0
W

2

2((0, 1) : H).

Since the operator A∗ possesses all the properties of the operator A, we have
KerP ∗0 = {0}. Then ImP0 is an everywhere dense set in L2((0, 1) : H). On the
other hand,

‖P0u‖2L2((0,1):H) = ‖f‖ ≥ α‖ρ−1/2f‖2L2((0,1):H)) ≥ ‖ρ
−1/2u

′′‖2L2((0,1):H))+
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+||ρ1/2A2u||2L2((0,1):H)) + 2 cos 2ε||Au′||2L2((0,1):H).

Obviously, for 0 ≤ ε ≤ π/4

‖P0u‖2L2((0,1):H) ≥ α‖ρ
−1/2u

′′‖2L2((0,1):H)+

+‖ρ1/2A2u‖2L2((0,1):H)) ≥ α(
1

β
‖u′′‖2L2((0,1):H)+

+α‖A2u‖L2((0,1):H) ≥ const‖u‖W2((0,1):H) ≥ const‖u‖L2((0,1):H).

Let now π/4 ≤ ε < π/2. Then cos 2ε ≤ 0. By (9), from equality (10) we obtain

‖P0u‖2L2((0,1):H) ≥ ‖ρ
−1/2u

′′‖2L2((0,1):H) + ‖ρ1/2A2u||2L2((0,1):H) +
2 cos 2ε

4 cos2 ε

1

α
‖f‖2,

i.e.
‖f‖2L2((0,1):H) ≥ α‖ρ

−1/2f‖2L2((0,1):H) ≥ α
(
‖ρ−1/2u′′‖2L2((0,1):H)+

+‖ρ1/2A2u‖2L2((0,1):H) +
1

α

cos 2ε

2 cos2 ε
‖f‖2L2((0,1):H)

)
= α

(
‖ρ−1/2u′′‖2L2((0,1):H)+

+‖ρ1/2A2u‖2L2((0,1):H)

)
+

cos 2ε

2 cos2 ε
‖f‖2,

i.e. (
1− cos 2ε

2 cos2 ε

)
‖f‖2) ≥ α

(
1

β
‖u′′ ||2L2((0,1):H) + α||A2u||2L2((0,1):H)

)
Hence we have

1

2 cos2 ε
||f ||2) ≥ min(1, α2)const‖u′′‖2W 2

2 ((0,1):H),

i.e.
‖P0u‖L2((0,1):H) ≥ const‖u‖W 2

2 ((0,1):H) ≥ const‖u‖L2((0,1):H).

Consequently, the image of the operator P0 is closed, i.e. ImP0 = L2((0, 1) : H).
Then there exists a bounded operator P0

−1, i.e. P0 is an isomorphism.
The theorem is proved.
We have

Theorem 3. Let the conditions 1)-3) be fulfilled. If

q(ε) = d1(ε)||B1||+ d2||B2|| < 1, (11)

where the numbers d1(ε) and d2(ε) are determined from Theorem 1 by the equali-

ties (7), then the operator P = P0 +P1 isomorphically maps the space
0
W

2

2((0, 1) :
H) onto L2((0, 1) : H).
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Proof. Show that the operator P isomorphically maps the space
0
W

2

2((0, 1) :
H) onto L2((0, 1) : H) subject to the theorem conditions. For any f ∈ L2((0, 1) :
H) we consider the equation

Pu = P0u+ P1u = f, f ∈ L2((0, 1) : H) u ∈
0
W

2

2((0, 1) : H). (12)

Since by Theorem 2 the operator P0 :
0
W

2

2((0, 1) : H) → L2((0, 1) : H) is an
isomorphisim, the inverse operator

P−10 : L2((0, 1) : H) →
0
W

2

2((0, 1) : H) is bounded. Then, denoting ω = P0u,
we obtain u = P−10 ω. Obviously, for any ω ∈ L2((0, 1) : H) there exists u ∈
0
W

2

2((0, 1) : H), for which u = P−10 ω.

Then from (12) we obtain the following equation in the space L2((0, 1) : H):

ω + P1 P
−1
0 ω = f , ω, f ∈ L2((0, 1) : H).

For any ω ∈ L2((0, 1) : H)

||P1P
−1
0 ω||L2((0,1):H) = ||P1u||L2((0,1):H) ≤ ||A1u

′||L2((0,1):H)+

+||A2u
′||L2((0,1):H) ≤ ||A1A

−1|| ||Au′||L2((0,1):H) + ||A2A
−2|| ||A2u||L2((0,1):H).

Taking into account the results of Theorem 1, we have

‖P1P
−1
0 ω‖L2((0,1):H) ≤ ||B1||d1(ε)||P0u||L2((0,1):H)+

+||B2||d2(ε)||P0u||L2((0,1):H) = q(ε)||P0u||L2((0,1):H) = q(ε)||ω||L2((0,1):H).

Since q(ε) < 1, the operator E + P1P
−1
0 is invertible in H, and

u = P−10 (E + P1P
−1
0 )−1f.

Obviously, we have the inequality

||u||W 2
2 ((0,1):H) ≤ const||f ||L2((0,1):H).

The isomorphism of the operator P is proved. J

Note that if we replace the condition (11) by

d1(ε)||B1 +K1||+ d2(ε)||B2 +K2|| < 1,
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then the operator L = P + T is also acting isomorphically from
0
W

2

2((0, 1) : H)
into L2((0, 1) : H). But we do not use complete continuity of the operators
Ki (i = 1, 2). Their continuity suffices here.

We now prove the Fredholm property of the operator L :
0
W

2

2((0, 1) : H) →
L2((0, 1) : H).

We have

Theorem 4. Let the conditions 1)-4) be fulfilled, and the inequality (11) hold.
Then the operator L is a Fredholm operator, i.e.

a) dimKerL = dim KerL∗ <∞,
b) ImL is a closed set in L2((0, 1) : H).

Proof. We rewrite the equation Lu = f , f ∈ L2((0, 1) : H) , u ∈
0
W

2

2((0, 1) :
H) as

Lu = Pu+ Tu = f,

where P = P0 + P1, while T is determined as Tu = T1u
′ + T2u, u ∈

0
W

2

2((0, 1) :
H).

We proved that, subject to the condition of the theorem, the operator P is

an isomorphism between the spaces
0
W

2

2((0, 1) : H) and L2((0, 1) : H). We write
the operator L in the form

Lu = Pu+ Tu, u ∈
0
W

2

2((0, 1) : H).

Since for u ∈
0
W

2

2((0, 1) : H)

Tu = T1u
′ + T2u = T1A

−1Au′ + T2A
−2Au = K1Au

′ +K2A
2u,

where K1 and K2 are completely continuous operators in H, it follows from the
results of [21, p. 83-84] that for any ε > 0

‖K1Au
′‖L2((0,1):H) ≤ ε‖u‖W 2

2 ((0,1):H) + η(ε)||u||L2((0,1):H)

and

||K2A
2u||L2((0,1):H) ≤ ε||u||W 2

2 ((0,1):H) + η(ε)||u||L2((0,1):H).

Hence for rather small ε1 > 0 we have:

||Tu||L2((0,1):H) ≤ ||T1A
−1||||K1Au

′||L2((0,1):H) + ||T2A−2||||K2A
2u||L2((0,1):H) ≤
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≤ ε||u||W 2
2 ((0,1):H) + η(ε1)||u||L2((0,1):H) (ε1 = 2ε). (13)

Let us show that from inequality (13) it follows that the operator T :
0
W

2

2((0, 1) :
H) → L2((0, 1) : H) is completely continuous. Since A−1 is a completely con-

tinuous operator, the imbedding W
2
2((0, 1) : H) ↪→ L2((0, 1) : H) is compact.

Then the set Q = {u : u ∈ W
2
2((0, 1) : H), ||u||

W
2
2((0,1):H)

≤ c} is compact in

L2((0, 1) : H) .
Therefore, from this set we can select the sequence {u}∞n=1 ∈ Q, that converges

in the norm of L2((0, 1) : H) , i.e. ||un − um||L2((0,1):H) → 0 as n,m→∞.

As u ∈ Q, we have ||un − um||W 2
2 ((0,1):H) ≤ 2c. Then

||Tun − Tum||L2((0,1):H) ≤ 2ε1c+ η(ε1)||un − um||L2((0,1):H),

since we can find n0 such that ||un − um||L2((0,1):H) < ε2 for n > n0 ,m > n0,
where the numbers ε > 0, ε1 > 0 , ε2 > 0 are rather small. For n > n0 and
m > n0 with rather small δ > 0

||Tun − Tum|| ≤ (2ε1c+ η(ε1)ε) < δ, n,m > n0,

i.e. the sequence {Tun} converges in the space L2((0, 1) : H). This means that

the operator T :
0
W

2

2((0, 1) : H) → L2((0, 1) : H) is compact and E + P−1T

is a Fredholm operator in
0
W

2

2((0, 1) : H). Therefore the image of the operator
E + P−1T is closed . From Theorem 2 it follows that the operator

L = P + T = P (E + P−1T )

is a Fredholm operator since P is an isomorphic operator from
0
W

2

2((0, 1) : H)
to L2((0, 1) : H).

The theorem is proved. J
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