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Global Existence and Uniqueness of the Solution
to a Model of the Pattern Forming Process in E.
coli Colonies
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Abstract. In this paper we consider a Parabolic systems modeling bacteria pattern
formation proposed by Aotani et al.(Jap. J. Indust. Appl. Math., 27:5-22, 2010). Ac-
cording to Yagi’s arguments (in Abstract Parabolic Evolution equations), we reduce them
to corresponding evolution equations and show the existence of time global solutions.
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1. Introduction

Aotani et al [1] presented a macroscopic continuum model of E. coli pattern
formation that incorporates cell diffusion, chemotaxis, population growth and
conversion to an inactive state. This model satisfactorily reproduces the observed
spot patterns, supporting the view that these patterns are indeed a result of self-
organization, and allows us to infer plausible minimal mechanisms that generate
the observed patterns. Then they will derive the following system

(8 = DyAu — V.(qulXTUiQ) - kfjnu + ksg (u) nu, (t,x) € RT x Q

0w = DyAv — kv + kru, (t,7) € RT x Q
On = Dy An — ksg (u) nu, (t,x) € RT x Q

Oyw = kfj_nu, (t,r) e RT x Q, (1)

Oyu = dyv = dyn = d,w = 0 on 01,

u(0,.) = ugp, v(0,.) = v, n(0,.) =ng, w(0,.) =wp in 2.

http://www.azjm.org 3 © 2010 AZJM Al rights reserved.
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Here Q € R? (d = 2,3) is a bounded domain with C? boundary 952, the initial
data ug, vg, ng, wo are assumed to be nonnegative and 0, denotes the derivative
with respect to the outer normal of 02. This system is a mathematical model
describing the bacteria pattern formation, for the active cells u, inactive cells
w, chemoattractant v. Denote n by the concentration of nutrient consumed
by the cell density . The coefficients D, Dy, Dy, x, k1, ko, k3, k4, ks, ke, k7, kg are
the given positive constants. g (u)n is the growth rate of the cell population,
simplified as follows:

g(u) = % + %tanh (kqu — ks) . (2)

We dedicate the first part of this work to the study of the local existence
in time in the case of two and three dimensions for the model (1). We want to
present existence and uniqueness results in a sophisticated way enough to apply
8]

In this way, we will consider the Cauchy problem (1) for a semilinear evolution:

@ 4 AU = F(U),
{ “ U0 = v, (3)

The equation in (3) contains two operators, a linear operator A and a non-
linear operator F. We should prove in a Banach space X, that A is a sectorial
operator of X with angle < 7.

Meanwhile, the operator F' is a nonlinear operator from another Banach space
D(A%) into X, with some exponent 1 < ¢ < 2, and F satisfies a Lipschitz
condition described by two fractional powers A3 and A3.

Hence, the existence and uniqueness of a local in time solution U is ensured
for any Uy € D(A%) thanks to [8, Theorem 4.1, p. 178].

Secondly, as [8, Corollary 4.1, p. 185] shows, the a priori estimates for local
solutions of (3) with respect to the form HA%U ] <ec (HA%U0H> ,(t €0,Ty])
ensure extension of local solutions without limit so as to construct the global
solutions for nonnegative initial data Uy € D(A%). We recall that, according
to Theorem [8, Corollary 4.1, p. 185], the interval [0,7,] on which the local
solution was constructed is determined by the norms HUOHD (a}) only. This fact
immediately provides the global existence of solutions which is utilized very often
in applications.

The main tool in this second step is the maximum regularity of Sobolev [6]
with Sobolev’s injections [3].
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2. Local in time existence of a solution

Let ©Q be a bounded domain in R? (d = 2,3), and, for 1 < p < oo, LP(Q)
be the usual Lebesgue space endowed with the norm || r»q). Let for s > 0,
H*(Q) be the usual fractional Sobolev space. We define for Q of C? class, and
for % < s <3,

HY (Q)={ue H°(Q), Opu = Oon 00},

and for s < 3, we set Hy, (Q) = H* (Q), with the norm Nl & ()
We denote

{t = (w0, v0,m0, wo)" 5 0 < ug € L*(R),
0 < vy, ng, wo € H' (Q)}.
The aim of this section is to prove the following theorem:

Theorem 1. For any Uy = (ug,vo,no,wp) € K, (1) possesses a unique local
solution in the function space

€ CO0 Tl 1 (90) N C(O.Tog 1 (9) 110 T 2 ()
v,n € C(10, Ty} s HY (€2)) 0 C([0, T ] s Hy () N CH(0, T ) s H' (),
w € C([0, Tys) s H' () N CH(10, T s H' (€2)). (4)
In addition, for all ¢ € ]0, Ty, ] the solution satisfies the estimate
lull 1) + vl a20) + Inllg2@) + vl H1@Q) < Cup, (5)
with some constant Ty, Cy, > 0 depending on the norms |luol| g1 () +|voll g2 () +

[m0ll 7r2(0) + llwoll 71(0)-

2.1. Proof of Theorem 1

We formulate problem (1) as the Cauchy problem for an abstract semilinear
equation

U 1 AU = F(U),
{ ‘ U(0) = U, (©)

in a Banach space X as follows:
X={U= (u,v,n,w)" ; we L?(Q), v,n,we H* Q)},
endowed with the norm

I (w, v, w)" || = [lull2@) + Vil @) + Inlla @) + [l g o)
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2.1.1. Basic properties of operator A

We introduce a diagonal matrix operator A acting in X as follows:

A =diag {Ay, Ay, An, Aw}
= diag {—Dy,A + 1,—D,A + kg, — D, A+ 1,1}

A is a sectorial operator of X, the spectrum of which is contained in a sectorial
domain o (4) C >, = {A€C,|argA\| <wa} with some angle 0 < wq < 7.
According to [8, Theorem 2.4, p. 61], which ensures that the resolvent satisfies
for A\ ¢ o (A) the estimate

o= a7 = o= 407 g * 3 =407

o 1207

L(L2()) L(H(2))

+ H()\ — A Hc(Hl( L(HY(Q))
1

1+ Dy, 1+D, 1+Dyp
< <min{l;Du} + min{ke; Dy } + min{1;Dy } + 1) m

In Ly(€2), under the Neumann boundary conditions on 99, D(A,) = H% (Q)
(see [5, Theorem 3.2.1.3]), and according to [8, Theorem 16.7, p. 547], (see also

[4]),

HY(Q), 0<6<?3
0y __ ) = 1
D(A“)_{ HY (), 2 <0<1, @
with norm equivalence
o Il ) <[4, o < calullpe . weD@D. @)

Here, A, and A,, are realizations of — D, A+kg and —D,, A+1 under the homo-
geneous Neumann boundary conditions % =0 and % = 0 on 012, respectively.
Thanks to [8, Theorem 2.9, p.66], A, and A, are positive definite self-adjoint
operators of H' () with domains Hy, () = {u € H?(Q), % =0 on 9Q}. Fur-
thermore, according to [8, Theorem 16.1, p.528], the domains of their fractional
powers are characterized by

H*L(Q), 0<0< 1
0\ 0\ _ ) = 1
DY) =2l = { farn o) 155 5E 0

with norm equivalence for ¢ = n, v

051 ”u||H29+1(Q) < HA?UHHl(Q) < cq ||u||H29+1(Q) , u€ 'D(A,?), (10)
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cq > 0 being determined by 2.
Moreover, it is clear that A? = diag {AY, A9, A% A%}. Thanks to [7], we
have D(A%) = [X,D(A)],. Then

(A9) {U (u,0,m,w0) s u € H? (Q),n,v € H21(Q) weHl(Q)},0<0<%,

(A%) {U (u,0,n,w)" s u € H? (Q),n,v € HX+L(Q) ngl(Q)}&<9<Z,

(A"):{U (u, v, n, w) H2(Q) n,v€H29“(Q),weHl(Q)},%<9§1.
(11)

2.1.2. Construction of local solutions in Sobolev space

The nonlinear operator F' from D(A%)(%l <0 <2,d=2,3) into X is defined by

t
F(U):( V(UVk; -‘rv?) klz%‘fn +g(u)nu+u7 k7u7 kSQ(u)nu+n’k+nu+w> ’

where g (u) = 3 + 5 tanh (kou — k3) .
Let U,V € D(A%). Since U = (u1,v1,n1,w1)", V = (ug, va, ng, ws)", we have

1EU) = F(V)]

< HV (k, e Vur — k+v2n2 )H + (L4 kr) [lur — uall g

+ w1 —wallgrq) + ||n1 _n2HH1(Q)+

+2ks llg (w) may — g (us) nauall oy + 262 (12)

ul _ u2
k3+ni1] k3+na|

We apply the Holder’s inequality

HY(Q)
<

‘ . W)‘ L2(Q) — <‘ L4(Q)>

(Il e oy + 19l gy ) (19 2y + 1400 2y ) -

In the sequel, we need the following embeddings: H$, () < L> (Q), H*~! (Q) —
LA(Q), H' (Q) < L*(Q) and W4 (Q) < L (). This leads us to choose the
parameter ¢ such that (% < § < 2,d=2,3) in order to ensure for n € H (Q),
v € H () the following inequality:

xv?

xv?
L=(9) + HV’WFUQ

k1 +1}2

’U2
T 1ol g2y Il o @) - (13)

HV(ki‘}izan)H

SCQ‘

L2(Q) WLa(Q)
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Using the same arguments of [8, (1.93), p. 50|, and combining this with the
embeddings H% () — HY () = W (Q) (¢ <5< 2,d=2,3), we get

xvi _ X3
HV. (kﬁ-fuf v ki+v2 nQV'UQ)‘ L2(Q)
2
< e (14 floal, ) s = 2l s 14

H2(9)
+eq lluallgsy (1 + o1l gz + ||v2HH2(Q)) [vr — vl

H2(Q)
Since H% () — HY () — L (Q), (4 < < 2,d = 2,3), we have
lg (u1) viny — g (u2) uzna || g1 (q)
< cq (Il gy + Il ey ) Ima sy ler = w2l ey
Fea l[uzll g o) vl s o) I — nall g2 g - (15)

In view of H% (Q) — H{ () — H' () (¢ < < 2,d = 2,3), we obtain that

_l’_

k k k
bt~ e ) < 1 = vl Inaliron | i e

ko (ni+mn2)
(ks+|n1])? (ks +|n2|)

L(9Q) (HanHZ(Q) + Hn2||H2(Q)> Hnl - n2HH2(Q) .

Hence,

|

< Mnellgaqey llur = wall oy + (I sz + Inellgaqey ) Int = nell grssqey

ks k2
ks +|ng] 41 k3+|n2\u2HH1(Q) (16)

Since HY () — H' (Q) (4 < < 2,d = 2,3), we have

lur = w2l g1 (q) + 101 = n2ll o) + lwr — wall g
< lun —uallgs gy + I = nallgresg) + llwr —wellgrq)- (A7)

We substitute (14), (15), (16) and (17) into (12), for %l << 2,(d=2,3).
Then

2
IEU) = F(V)|| < ca (1 +llurll gy + vzl gy + il + HU?”HQ(Q))

H2(Q)
(14 2y + Inall ey ) [l = vl gy + s = mollgrss oy +

lwr = wallzs ) + (lImall s ey + luzll ooy ) (Ior = velliragay + Ima = nallgege) ] -
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Therefore, in view of (11), (8) and (10), for (4 <6 < 2,d = 2,3), we deduce

IF(U) = FOV)| < eql HA2UH+HA2VH+1 [HAz U- V)H
+(ja20] + [atviparw - w].

[8, Theorem 4.1, p. 178] then provides the existence of local solution. Indeed,
for any Uy € IC, (6) possesses a unique local solution in the function space (4).

Furthermore, the solution satisfies the estimate ||A% Ul < Cy,. Here, Cy,, Ty, > 0

is determined by the norm HUO”D(A%) only.

3. Nonnegativity of local solutions

We shall show that the local solution constructed above is nonnegative for
Uy € K.

In this section we assume that Q C R? (d = 2,3) is a bounded domain with
C? boundary.

12 s<0
We denote by G the C! function defined by G (s) = { 207 ’

0, s>0.
Proposition 1. Under the assumptions of Theorem 1, we have
n(t,x) >0, x €Q, t>0. (18)

Proof. We set 1)(t) f G(n)dz. Using the third equation of system (1),

observing that G'(n) =n 1f n < 0and G'(n) =0if n >0 and G'(n) € H(Q) for
n € HY(Q), by the Holder’s inequality, we have

V() = —Dn/\vG’(n)Ed:c—/ksg(u)unc:'(n)
Q Q
kol () tll e | () Py

IN

(5) shows that [lg (v)ullze) < |lullze) < erv,- Then 1/1( ) < CTUo%/)( ). By
Gronwall’s inequality 1 (t) < 4(0)exp (¢t cr,,) - Then ¢(0) = [, G(no(t, z))dx =
0. Then ¢ (t) = 0, consequently, n > 0. <

Proposition 2. Under the assumptions of Theorem 1, we have

u(t,x) >0, x€Q, t>0. (19)
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Proof. We note (t) = [, G(u(t,z))dx. We have ¢/(t) = [ G'(u)udz. Then
Q

P(t) = / Auda:—/G' = JFUQ)alac

/ 2t G (w)da + / ksg (w) nuG’ (u)dz.

Q Q

Observing that G'(u) = u if u < 0 and G'(u) = 0 if u > 0 and G'(u) € HY(Q)
for u € H'(Q), and assuming % =0 in 09, by the Holder’s inequality, we have

V) £ —DullVG @) ey + 192 o0 [VE W) 200 |G ) 200
k
+ (2 + s ) n||Loo<m) 16" e (20)
(5) shows that

IV 2 [l @) + 1Ksg (w) nll L@y < callollae) + callnll 2@y < Cuy,

for 0 <t < Ty,. Therefore, (20) becomes

IV 24 (@ 196 () 20 |G ()] 220

< B V(@ @)F) + CoollG'()l[720- (21)
Thus, in view of (21) and (20) P'(t) < cT Uo¥(t). By Gronwall’s inequality 1 (t) <
¥(0) exp (t cr,,) - Then 9(0) = [, G(ug(t,x))dx = 0 so that ¢(t) = 0, hence
u>0. €

Proposition 3. Under the assumptions of Theorem 1, we have
v(t,x) >0, z€Q, t>0. (22)
Proof. We set 9(t) fG )dz. Observing that G'(v) = v if v < 0 and
G'(v) =0if v >0 and G'(v ) € HY(Q) for v € H'(Q), and assuming 9% = 0 in
o0,
Y (t) = —D, / ‘VG’(U)’ZCZ.%' - /k‘ﬁvG'(U) + /k7uG’(v).
Q

Q Q
since G'(v) < 0 and vG'( ) > 0. Hence, ¢/(t) < 0. By Gronwall’s inequality
Y(t) < ¥(0), then (0) = [, G(vo(t,z))dx = 0, so that (t) = 0, consequently
v > 0.
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4. Global solutions

In this section we assume that @ C R? (d = 2,3) is a bounded domain with
C3 boundary. As [8, Corollary 4.1, p. 185] shows, the a priori estimates for

local solutions of (6) with respect to the AU (t) norm ensure extension of local
solutions without limit so as to construct the global solutions. «

4.1. Preliminaries

For later use we state the following auxiliary results:

Lemma 1. Under the assumptions of Theorem 1, for 0 <t < Ty

kr|ln(®)| L1y + (ks + ks) [[i(t)[ L1 (o) + Kello(®)] L1 ()
< krllnollpiq) + (ks + ks) [lioll 1) + Kellvoll L1 (q)- (23)

Under the same assumption,
In() Lo (e) < lInollze(o)- (24)

Proof. Thanks to the homogeneous boundary condition vn.n = 0 and
Vu.n = Vi.n =0on 090, we directly integrate and add the three equations to (1),
and as n,v,7 > 0, we have % (k’?”nHLI(Q) + (ks + ks) il L1 o) + k(;HvHL1(Q)) <0,
and mass conservation (23) is satisfied.

Now, n satisfies the variation-of-constants formula,

t
n(t) = ey“ng + /6_(t_s)A" (1 —kgg (u) u)nds, 0 <t <Ty,
0

as n,u > 0, consequently,

[l oo () <
t
et ol ooy + [ 5 P~
ﬁ(LOO(Q)) 0 LOO(Q) ﬁ(Loo(Q)’Loo(Q)) LOO(Q) ’
0

from the estimate in [2, Theorem 12.3, p. 250], and the Gronwall’s inequality, we
have for 0 <t < Ty :

172/l Lo () < ca [[noll os ()

then (24) is satisfied. «
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Lemma 2. Let p be a fized parameter satisfying 1 < p < oo and suppose that
Uy = (up,vo, no, wo) € K. There ezists a constant cq > 0 (depending on Q) for
any 0 <t < Ty such that

[0l Le@) < callluoll L) + lvoll o) + 170l iy + llwollLigy)-  (25)

Proof. The second equation of (1) is written as the formula,

t
v(t) = ”v0—|—k7/ Aoy ds, 0 <t < Ty, (26)
0
in LP(Q) (1 <p < 00). Then
””HLP(Q) < HeitAv L(LP(Q ||”0HLP
t
) )
by [ e == ds,
- 7/ 7 e 1© 7 ey Tl e @8

0

From the estimate in [2, (2.128), p. 102], and the formula ;f%F (%) =

+o0
of s*le71ds (Re(z) € RY), it follows that for 0 <t < Ty

loll gy < co llvoll oy + car T (1) llull 1 qy.

As given (23), we have (25). «

4.1.1. A Priori Estimates
In this section we will prove the following result:

Proposition 4. Under the assumptions of Theorem 1, we have for any 0 <t <
TU 1 1
|A2U| < e(|A2Uoll) (#* + 1) (27)

Proof.
15'step: We denote ¢ (v) = (k1 +v)* (a < 0), with

2
a < ——X ;1fl31”D+%Dv<1
kZ DyD,
2
1— |1+ %BGX (28)
1 . kf DuDv \ . Dy+4D
aZmaX _Du+4Dv_17 3 N lfﬁ>l

1Dy Dy
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By multiplying the first and second equations of (1) by u3¢ (v) and integrating
over {2, we get

d/ uty (v)dm+/ 3D u? |[vul® ¢ (v) dzx
4dt

Q Q
+/’“2 ¥

Q

w+4Dy) /u?’cp/ ) Vu.Vodr— (k?’l’:fﬁ)z udp (v) Vu.Vodz+ky / u’y' (v) dx

Q Q Q

—kﬁ/u4vg0’(v)dx—|—/ nulg (u) ¢ (v )da:+/(3’ﬂ><”2u ¢ (v) |[vol* de.

k1+v2?)
Q Q Q

) x:—Dv/ 4 (0) |90 da

Q

By simplification, we get

d

4 2 2 kauo(v)
1| @(v)d:er/ 3Dyu” [Vul ¢(v)dw+/2ks+nd$

Q Q Q

< —/ |:(Du +4D,) ¢’ (v) + (ki’if;’)ggo (v)} uvu - Vode
Q

+/ nulg (u) ¢ (v) dx+k7/u5cp’ (v) dz

Q Q

—/ [Dvgo” (v) + (k?’kif:)w (v )] ut | vo|? dz — k‘6/u4vg0’ (v) dx. (29)
) Q

We apply Holder and Cauchy inequalities to obtain

kg / whvg! (v) dz < ¢ / oo (v) da. (30)

Q Q

Similarly, using (2) and (24), we get

/ {(Du +4D,) ¢ (v) + (kslliq)f:)Q o (v )} uvu.vude

Q

< D, [ @ iilo)det [ CHPAEO G g0 da
Q
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92 po(v) 4 2

+/ T%Du oY |Vo|” dx. (31)
Q

We substitute inequalities (30), (31) in (29), to obtain

Jét/ ute (v) d:v+/u4<p (v) dmkﬁ?/“%' (v) da

Q Q Q

(Du+4Dy) (@' (v))* 2 _elv) 1" 4 2
< / ( IDup(v) +k1%Du e t0)? Dy (v))u |Vo|* dz
)

+(c+1) /u4g0 (v) dx + / nug (u) ¢ (v) dz. (32)

Q Q

According to the inequality (28), Holder and Cauchy inequalities,

c/u4<p (v)de = c/ (u (—gp’ (v))%)47@(v) rdz
(=¢'(v)3

Q Q
< ki [ .5 _(p()®
< T | v (v) da:—i—c/ (ﬂp/(v))“dx
Q Q
< i [wd@dore [ (eo)dn @)
Q Q

Similarly, using (2), (24), we get

v 5
< —’“Ej/ugsol (v) d$+c/”9 (u) ((iosz(v ()1)1))dx
Q

Q
< _kg/ussol (v) dg;+c||n0HLoo(Q)/(U+k4)d37' (34)
Q Q

We substitute inequalities (25), (33), (34) in (32) to obtain

C‘lit/u‘lgp(v) dx+/u4g0(v) dz
0 0
< cq ([luoll L) + llvoll Ly + Inoll o) + lwoll Lr(a)) -
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By solving differential equation, due to (25), (28) we get

/U4<P(U) dx < cq (|Juoll @) + llvoll Lo @) + 1m0l L) + llwoll i) - (35)
)

Using (2), (22), (25), (32), we get

e = [ te)t @)t

IA
o
—
IS

S
AS)
=
QU
&
—
N
=
Q
IS
&

Then, due to (35),
[ullZ2q) < e (l[uoll Ly + llvoll Loy + [0l L (@) + llwoll L)) - (36)

2"dstep: By multiplying the first and second equation of (1) by Awu, and

ANv, respectively, and integrating over €2, we get

3% (17l + 140132y

+Du| Aull72 gy + Dol|VA0[[72(q) + kol Avl[72 (0

< —/ V.(uvkﬁiz)Audx—/kggﬁlud$
Q Q

—|—k:7/g(u) nuAudx—l—lﬁ/Vu.VAvdw. (37)
Q Q

With the help of the Cauchy inequality, using the arguments of [8, (1.93), p. 50],
with some exponent % <6 <2,(d=2,3), we get

v? 02
/ V(Y ) Aude < B AulRag, + callulllys gl pez e (38)
Q
Here,

v2 - 2k1(k1—3'02) 2 2]611)
A () = 2o vol + G2, A,

By (22), using the embedding H3, () < W4 (Q), we get
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U2
callullfysiqy (I 12200 + 1 (52 ) ooy )
calluls oy (I0laa) + 1900340y + 1401220

ol + N0l ) -

IN

IN

CQH”H%W(Q)

Using the arguments of [8, 2.119, p. 98], by Cauchy’s inequality, we have

s |12 1|4
cq ||AZu ‘Aﬁv +||Avv||ig(m
12(Q) 12(Q)
8 3
< co llull3zdy, [ Awullla) +co lullfai, [ Auulf, 012, \A
12(Q)
5 2 3 3
e lul%22,) I Auullagy 0] 3o \A
12(Q)
) 6(5—2) 6(5—2) 4
< callullagy +ca lul 3 015, +ca lul 2@ IWI5E,
2
3
+8n || Ayl o) + B || AZv (39)
£2(9)

We substitute (38), (39) in (37):

= (HWH%z A0y ) + DullSul] + kol A0]2a(q) + Doll7 A0l

< el llullze @) + brllg () [ Il 7 @ el 72(q)-

Using (2), (24), (36), by integrating over [0, t], we get
(HVUHQLQ(Q) + HAUH%Z(Q)>
¢
+ [ (Dulsull + kol ol + Dullv S0l ds
0

< c(lluoll a1y + llvoll 2(q) + lImoll m2(0))t; (40)

By multiplying the third equation of (1) by AAn and integrating over Q, we
get

thHAnHL? + D, ||VAn||L2 /V )nu).VAndz. (41)
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By (2), (25), (36), (40), using the embedding H}VM () — Wb (Q), with some
exponent g <6< 2,(d=2,3),

/ V(g (u) nu).VAndx

IN

Dnnmnny )+ callg () 2oy a2 e I 1. 0
%nvmnm [l gyl sy + looll sy + lImoll a2 )42)

IN

Using the arguments of [8, 2.119, p. 98], we get
2(146)

HA - nll22q <CQH7”LHL2(Q) (43)

‘A%n

L*(Q)
We substitute (42), (43) in (41). Then using (8), (24), by Cauchy’s inequality,

we get,

5 18nla0) () < elluollrecay + ol + Imolen) (6 1. (49

By multiplying the forth equation of (1) by Aw and integrating over Q x [0, ¢],
using the embedding H%, (Q) — H' () — L*(Q), we get

t

ulmey < [ Il luln@ds + [ Il el I7nlswds
0 0

/ il (1 + ey ds,

From (18), with (24), (40), (44), we get

0<511<P lwliFqy (1) < e(lluoll () + lvoll a0y + Inoll g2+ lwoll 20)) (82 +1) -
(45)
Finally we use (24), (25), (36), (40), (44), (45), to obtain for 0 < ¢ < Ty
s (1@l + 10 Ol + I Olls + o Ol o)
< cllluoll gy + llvoll 20y + lInoll 20y + llwoll arigey) (82 +1) -
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4.1.2. Global solutions

In this section, we will prove the following theorem:

Theorem 2. For any Uy = (up, v, no, wy) € K, there exists a unique global
solution of (1) in the function space

u € C(]0,+o0[; H (Q)) N C([0, +oo[; HL (Q)) N C1]0, +00[; L? (),
v,n € C(10,+o0[; HY (©2)) N C([0, +00[; Hy (2)) N C*(J0, +-00[; H (2))
w € C([0,+o00[; H () N C(J0, +00[; H' ().

Proof. Utilizing the a priori estimates (27), we shall construct a global solution
to (1).

For Uy € K, we know that there exists a unique local solution at least on an
interval [0, Ty, ].

Let 0 < t; < Ty,. Then, Uy = U(t;) € K. We next consider problem (1)
with the initial value U; on an interval [t1,T], where the end time 7" > 0 is any
finite time. The Proposition 4 ensures the estimate (27) for any local solution

v, i-e,HA%V(t)H < C(HA%U1||) (T?+1), t; <t < Ty. Then, the local solution
V' can always be extended over an interval [t, Ty + 7| as local solution, 7 > 0

being dependent only on c(||A%U 1) (T? + 1) and hence being independent of the
extreme time Ty (cf. [8, Corollary 4.1, p. 184]). This means that our Cauchy
problem possesses a unique global solution on the interval [t1,T].

This argument is meaningful for any finite time 7" > 0. So, we conclude that
for any initial value Uy € K, there exists a unique global solution to (1) with
U(t) € K,0 <t < oo, in the function space

U € C(]0, +00[; D(A)) N C([0, +00[; D(AZ)) N CL((]0, +oo]; X).

References

[1] A. Aotani, M. Mimura, T. Mollee, A model aided understanding of spot pat-
tern formation in chemotactic E. coli colonies, Jap. J. Indust. Appl. Math.,
27, 2010, 5-22.

[2] H. Amann, Dual semigroups and second order linear elliptic boundary value
problems, Israel J. Math., 45, 1983, 225-254.

[3] H. Brezis, Analyse fonctionnelle, theorie et applications. Masson, Paris (1983).



Global Existence and Uniqueness of the Solution 19

[4] G. Grubb, Regularity of spectral fractional Dirichlet and Neumann problems,
Math. Nachr., 289(7), 2016, 831-844.

[5] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, London, 1985.

[6] O.A. Ladyenskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and quasi-linear
equations of parabolic type, American Mathematical Society, 1968.

[7] A. Yagi, Hoo functional calculus and characterization of domains of fractional
powers, Operator Theory: Advances and Applications, Vol, 187, Birkh"auser,
Basel, 2008, 217-235.

[8] A. Yagi, Abstract Parabolic Evolution equations, Springer Monographs in
Mathematics, 2000.

Hocine Tsamda

Ecole Nationale Supérieure des Technologies Avancées (ex ESSA.ALGER), Bab El Oued Alger
DZ; 16001

Faculty of Mathematics, AMNEDP Laboratory USTHB University, P.O. Box 32 El Alia Bab
Ezzouar Algiers 16111

E-mail: hocine.maths@gmail.com

Received 28 May 2023
Accepted 16 August 2023



