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On Conservative and Dissipative Difference Scheme
of Dynamics of an Ideal Perfect Gas

F.B. Imranov*, A.G. Sokolov

Abstract. To approximate the continuity equation, a conservative difference scheme
with a non-negative solution is considered. The energy equation is reduced to an analog
of the continuity equation, the approximation of which ensures the non-negativity of the
solution. For an ideal perfect gas, a grid analog of the energy inequality is obtained for
a nonlinear implicit difference scheme.
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1. Introduction

The theoretical substantiation of the existence of generalized solutions of com-
pressible continuous medium models was made in [5]. There, significant results
were obtained for the barotropic gas model and the shallow water model close to
it, as well as for the ideal perfect gas model. In [1], the results on the construc-
tion and study of a difference scheme for an inviscid barotropic gas are presented.
In [4], we applied our difference schemes to calculate large-scale sea currents us-
ing the shallow water model. The results obtained in [1, 4] are transferred in
this work to the case of the gas dynamics model of an inviscid ideal perfect gas,
including the energy equation. The difference scheme is constructed under the
assumption of differentiability of the solution of the original problem, while the
energy equation is reduced to an equation completely analogous to the continuity
equation.
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2. System of equations

The initial boundary value problem (system of Euler equations [2]) is consid-
ered for t > 0, x ∈ Ω:

∂ρ

∂t
+ divρu = 0,

∂ρu

∂t
+ div(ρu⊗ u) + grad p = 0,

∂e

∂t
+ div[(e+ p)u] = 0,

p = (γ − 1)ρε.

(1)

Here ρ is the gas density, u is the velocity, p is the pressure, γ = const > 1 is the

given adiabatic index, ε is the specific internal energy, e = ρε+
1

2
ρu2 is the total

energy per unit volume. The symbol ⊗ denotes the tensor product of vectors.
At the boundary of the domain, a no-flow condition is imposed. In the two-

dimensional case Ω = [0, 1]× [0, 1],u = (u1, u2)

u1(t, 0, x2) = u1(t, 1, x2) = 0, u2(t, x1, 0) = u2(t, x1, 1) = 0.

And the initial conditions are given as follows:

ρ|t=0 = ρ0(x) ⩾ 0,u|t=0 = u0(x), e|t=0 = e0(x) ⩾ 0, x ∈ Ω.

We will assume that the initial conditions are consistent, i.e. if ρ0(x) = 0, then
u0(x) = 0, e0(x) = 0.

For this problem, under the conditions of existence and differentiability of the
functions ρ, u, e, one can formally obtain the integral identity∫

Ω

e(t, x)dx =

∫
Ω

e(0, x)dx.

Further, we will assume that the solution of the original problem is differen-
tiable. In this work we will construct a difference scheme that inevitably has a
grid viscosity and that satisfies the grid analog of the energy inequality∫

Ω

e(t, x)dx ⩽
∫
Ω

e(0, x)dx. (2)

We will construct difference schemes on a uniform orthogonal grid. The ap-
proximation of the continuity and motion equations is constructed in [1]. The
same approximations will be used here.
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To approximate the energy equation, we perform transformations and replace
the unknown function. We multiply the continuity equation by u2/2, multiply
the equation of motion by u and subtract from the energy equation. Taking into
account the equation of state, we obtain

∂ρε

∂t
+ div[(ρε)u] + (γ − 1)ρεdivu = 0.

Let ρε = q ⩾ 0. Let’s introduce a new unknown function sγ = q. Then for s we
get an equation similar to the continuity equation:

∂s

∂t
+ divsu = 0.

The pressure gradient, according to the equation of state and the assumption
of differentiability of the solution of the original problem, is transformed to the
form gradp = γs gradsγ−1.

3. Difference scheme for the continuity equation

Next, we will construct a difference scheme for this problem. The goal of
the work is to obtain difference analogs of the non-negativity condition for the
density function ρ and the function s, the conservatism condition∫

Ω

ρ(t, x)dx =

∫
Ω

ρ(0, x)dx,

∫
Ω

s(t, x)dx =

∫
Ω

s(0, x)dx, ∀t > 0

and the energy inequality (2).

Since the equations for ρ and s are the same, we will only define an approx-
imation of the continuity equation. Using the notation from [1], we recall the
approximation in two-dimensional case:

ρt + ({ρn+1}1u1)x1 + ({ρn+1}2u2)x2 = 0,

{ρn+1}1 = ρn+1 − hρn+1
x̄1

max(0, sign(u1)) = [ρn+1]1 −
h

2
ρn+1
x̄1

sign(u1),

{ρn+1}2 = ρn+1 − hρn+1
x̄2

max(0, sign(u2)) = [ρn+1]2 −
h

2
ρn+1
x̄2

sign(u2).

The bracket operators {.}1, {.}2 depend on the grid functions u1, u2.

The matrix Aρn+1 = ({ρn+1}1u1)x1 + ({ρn+1}2u2)x2 has the following prop-
erties: the diagonal contains non-negative numbers, the off-diagonal entries are
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non-positive numbers; the sum of the elements along a column is zero. Con-
sider the matrix B = (E + τA)T . It has non-negative numbers on its diagonal,
non-positive numbers outside the diagonal, and has a strict diagonal dominance
along the row. For a matrix with such a property, the Jacobi and Seidel iterative
methods converge for any initial approximation. Let SLAE Bx = b be solved by
the Jacobi method with the initial approximation x0 = 0 and the right-hand side
vector b consisting of non-negative numbers. From the computational scheme of
the Jacobi method

xn+1
i =

1

Bi,i
(bi −

M∑
k=1,k ̸=i

Bi,kx
n
k), i = 1, 2, ...,M

it follows that xni ⩾ 0, i = 1, 2, ...,M, n = 1, 2, .... The limit vector will also
be non-negative. Thus, for any non-negative vector b, the vector x = B−1b
will be non-negative. This means that the matrix B−1 consists of non-negative
numbers. Consequently, the matrix (E + τA)−1 = (B−1)T exists and consists of
non-negative numbers.

The matrix A has the following property:

Lemma 1. In two-dimensional case, for any given grid functions u1, u2 and for
∀τ > 0 ∥∥∥∥∥

(
1

τ
E +A

)−1
∥∥∥∥∥
1

= τ.

Moreover, the sum of the elements of the matrix

(
1

τ
E +A

)−1

over any column

is exactly equal to τ .

Note that the maximum along any row is achieved on the diagonal element,
and this maximum is strict. The matrix elements along the row do not decrease
monotonically up to the diagonal element, then they do not increase monoton-
ically. This can be proved by directly calculating the elements of the matrix(
1

τ
E +A

)−1

, for example, using Cramer’s rule. Such calculations are quite

simple, but rather cumbersome, so a detailed proof is omitted here, since this
property is not used in the sequel.

Theorem 1. The difference scheme for the continuity equation ρt+A(u1, u2)ρ
n+1 =

0 and the equation for the function s : st+A(u1, u2)s
n+1 = 0 with any given grid

functions u1, u2 has a unique solution, and if ρ0 ⩾ 0, s0 ⩾ 0, then ρn ⩾ 0, sn ⩾ 0
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for ∀n. The difference scheme is conservative, i.e.

N1−1∑
i=0

N2−1∑
j=0

h1h2ρ
n
ij =

N1−1∑
i=0

N2−1∑
j=0

h1h2ρ
0
ij .

Similar is true for function s in two-dimensional case.

From non-negativity and conservatism it follows that ∥ρn∥L1,h
= const for

∀n. If u1, u2 are the given functions and ρ0 ⩾ 0, then the obtained equality is a
condition for weak stability of difference scheme.

For the function s, the approximation is exactly the same as for ρ. We will
assume that the initial conditions are consistent, i.e. if ρ0 = 0 at some point of
the grid, then s0 = 0 at the same point. In this case, grid points cannot arise
during the transition to the next layer in time, where s1 ̸= 0 and ρ1 = 0. For the
next layers in time, the same applies.

4. Fully implicit nonlinear scheme

When approximating the equation of motion, the same principle of directed
differences against the flow is used as when approximating the continuity equa-
tion. Let us consider a fully implicit nonlinear difference scheme, similar to that
constructed in [1]:

ρt + ({ρn+1}1un+1
1 )x1 + ({ρn+1}2un+1

2 )x2 = 0,

(ρu1)t + ({ρn+1un+1
1 }1un+1

1 )x1 + ({ρn+1un+1
1 }2un+1

2 )x2 + γsn+1((sn+1)γ−1)x̄1 = 0,

(ρu2)t + ({ρn+1un+1
2 }1un+1

1 )x1 + ({ρn+1un+1
2 }2un+1

2 )x2 + γsn+1)((sn+1)γ−1)x̄2 = 0,

st + ({sn+1}1un+1
1 )x1 + ({sn+1}2un+1

2 )x2 = 0,

in two-dimensional case. The bracket operators {·}∗ are defined by the functions
un+1
1 , un+1

2 in two-dimensional case.
Further reasoning does not differ fundamentally from that of [1, 4]. There,

the method of energy inequalities is used, and the calculations in [4] are detailed,
although very cumbersome.

The difference scheme is investigated as follows. Since the scheme is nonlinear
and implicit, it is necessary to verify the solvability of the problem at each step.
For this, an iterative process, the Leray-Schauder principle, and a double limit
transition are used.

We use the following version of the Leray-Schauder principle [3].
Let A be a completely continuous operator in a separable normed space F ,

and let any possible solution X ∈ F of the equation X+αA(X) = 0 be uniformly
bounded for α ∈ (0, 1]. Then there exists at least one solution of the equation
X +A(X) = 0.
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Theorem 2. Let the function ρ0 be strictly greater than zero at the initial moment
of time. Then there exists a solution to the difference scheme.

To complete the proof of the theorem, it remains to verify the validity of the
energy inequality. As in [1], Young’s inequality is used.

Here the theorem is formulated for a positive initial condition ρ0. In general,
this requirement is redundant. We can use the matching conditions for the ve-
locity and internal energy, setting them equal to zero at the points where the
density is zero, and not calculating them at the corresponding step. And when
the density, which is calculated for all points, becomes nonzero, then at the next
time step both the velocity and the internal energy are calculated at such points.
This approach allows us to prove Theorem 3 for a wider class of problems. We
had to deal with exactly this situation when modeling shallow water flows with
a curved bottom. Namely, in the shallow water model, the continuity equation
for the thickness of the water layer is obtained:

∂h

∂t
+ divhu = 0.

Here h is the thickness of the shallow water layer. And, as a result of the shallow
water level fluctuations above the surface, islands may appear through which the
flow cannot run. The function h degenerates, and the velocities should be set to
zero. This approach was called the rule of internal boundary conditions.

5. Shifted grid scheme

For practical calculations, the considered scheme in the version of the linear
implicit scheme has a drawback, since it does not preserve possible symmetries
of flows present in the original problem.

Now, we will consider another difference scheme. In this scheme, the symme-
try of difference relations is used if the grid functions ρ, u1, u2, s are considered
on shifted grids.

For grids on which ρ, s are defined, the nodes of the uniform orthogonal grid
are shifted to the centers of grid cells by half a step up and half a step to the
right, for u1 the grid is shifted by half a step up, for u2 - to the right. The grid
shifts are carried out without changing the numbering of the nodes.

We will assume that the initial conditions are consistent, i.e. at the grid
points where ρ0 = 0, the grid function s = 0. The conditions for the consistency
of the initial conditions for the velocities are the same as in the Rule of Internal
Boundary Conditions.
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5.1. Internal boundary conditions rule for a fully implicit nonlin-
ear scheme on shifted grids

At the computation points [ρni,j ]1 = 0, [sni,j ]1 = 0, the approximation of the

first equation of motion is replaced by the internal boundary condition un+1
1,i,j = 0,

at the points [ρni,j ]2 = 0, [sni,j ]2 = 0, the approximation of the second equation of

motion is replaced by the internal boundary condition un+1
2,i,j = 0.

In two-dimensional case, we obtain a difference scheme

ρt + ({ρn+1}1un+1
1 )x1 + ({ρn+1}2un+1

2 )x2 = 0,

([ρ]1u1)t +
1

2
({ρn+1un+1

1 }1un+1
1 )x1 +

1

2
({ρn+1}1 < un+1

1 >1 u
n+1
1 )x̄1+

+([{ρn+1}2un+1
2 ]1[u

n+1
1 ]2)x2 + γ[sn+1]1((s

n+1)γ−1)x̄1 = 0,

([ρ]2u2)t + ([{ρn+1}1un+1
1 ]2[u

n+1
2 ]1)x1+

+
1

2
({ρn+1un+1

2 }2un+1
2 )x2 +

1

2
({ρn+1}2 < un+1

2 >2 u
n+1
2 )x̄2+

+γ[sn+1]2((s
n+1)γ−1)x̄2 = 0,

st + ({sn+1}1un+1
1 )x1 + ({sn+1}2un+1

2 )x2 = 0.

< un+1 >1=
un+1
i+1,j + un+1

i,j

2
− h

2
(un+1)x1sign(u

n+1
ij ), < un+1 >2=

=
un+1
i,j+1 + un+1

i,j

2
− h

2
(un+1)x2sign(u

n+1
ij ).

The first equation of motion is approximated at the points where [ρn]1 > 0. At
the points where [ρn]1 = 0, the function un+1

1 = 0 is considered as given. The
second equation of motion is approximated at the points where [ρn]2 > 0. At the
points where [ρn]2 = 0, the function un+1

2 = 0 is considered as given. And if such
points exist, then the problem has the given internal boundary conditions, i.e.
conditions of no-flow in one of directions.

Now let us explain why such an approximation was chosen in two-dimensional
case.

∂(ρv1u2)

∂x2
∼ ([{ρn+1}2un+1

2 ]1[v
n+1
1 ]2)x2 .

This approximation does not include grid viscosity, but may be poor, since
the tridiagonal matrix of this approximation does not necessarily have a non-
negative diagonal element and the rest of its elements non-positive. This approx-
imation can be corrected by the same rule by which the approximation of the
continuity equation was constructed, i.e. by using differences against the flow:
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([{ϱ}2u2]1([v1]2 −
h2
2
(v1)x̄2sign([{ϱ}2u2]1)))x2 . This approximation may be two-

point or even one-point and not contain the function sign. In terms of indices,
this approximation has the form

1

2
(− |wi,j+1|+ wi,j+1) v1i,j+1+

+
1

2
(wi,j+1 + |wi,j+1| − wi,j − |wi,j |) v1i,j +

1

2
(−wi,j + |wi,j |) v1i,j−1,

where wi,j = [{ϱ}2u2]1 is a known function that determines the problem matrix
for the first velocity component.

Theorem 3. Let ρ0 ⩾ 0 and the initial conditions for s and the grid velocity be
consistent at the grid points where ρ0 = 0. The solution of the difference scheme
II with internal boundary conditions exists, the grid density and the function s
are non-negative, the grid analogue of the law of conservation of mass is satisfied,
the grid analogue of the law of conservation of the ”radical of internal energy” is
satisfied, and the grid energy inequality is satisfied.

Advantages of the scheme:

1. Non-negativity of the density, the law of conservation of mass is satisfied:
∥ρn∥L1,h(Ω) = const;

2. Non-negativity of internal energy, the law of conservation of the radical of
internal energy is satisfied: ∥ γ

√
qn∥L1,h(Ω) = const;

3. Grid energy inequality is satisfied. The scheme is dissipative.

4. If at some computation point the density becomes positive, then it will
remain positive at all subsequent time steps. If the density is zero, then all
other unknowns should be zeroed according to the rule of internal boundary
conditions.

Remark 1. In practical calculations, it is impossible to use a nonlinear implicit
scheme, so a linear implicit scheme and an internal iteration process are usu-
ally used at each time step. Internal iteration processes with factorization of the
transition operator to the next time step have proven themselves well.

In the equation of motion of the original problem, the pressure gradient is
written in a non-conservative form, so we initially assume differentiability of the
solution to the original problem. In this case, the problems will be equivalent.
Thus, the considered scheme is proposed for calculating flows without discontinu-
ities or with low-intensity discontinuities.
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In the work, a scheme for a model problem without external forces is consid-
ered. For real problems, the same approximations of differential operators can be
used. These approximations can be extended to curvilinear non-orthogonal grids,
to non-simply connected computational domains and to the case of three spatial
coordinates.

This work is supported by the project on ”Comparative analysis, mathemat-
ical modeling, and visualization of the manifestations of global climate change in
the Caspian Sea basin” run by the Science Foundation of the State Oil Company
of Azerbaijan Republic, 2023.
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