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Matrix Theory on Lorentz-Minkowski Scalar
Product

A. Marangoz, S. Yiice*

Abstract. In this paper, we investigate Lorentz-Minkowski matrix multiplication in-
troduced in [3] by O. Kegilioglu and H. Giindogan. Unlike [3], we will define some
transformations to get a connection between Lorentz-Minkowski matrix multiplication
and Euclidean matrix multiplication which allows for a more practical use instead of
direct approach.
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1. Introduction

Matrix theory is an essential tool to get results while dealing with any kind
of geometry. Determining the notions of matrix theory, semi-Riemannian geom-
etry is an attractive area for researchers. Some basics of matrix theory in semi-
Riemannian geometry was studied by B. O’Neill ([1]) who obtained his results
with the help of sign matrix. After that, it was realized that a more suitable
matrix multiplication can be used to eliminate the need of sign matrix. That
matrix multiplication was named Lorentz matrix multiplication. Later, Lorentz
matrix multiplication was generalized to pseudo matrix multiplication and named
Lorentz-Minkowski matrix multiplication. There is a great deal of studies in that
area, [2, 3, 4]. In these studies, the calculations had been conducted by a direct
approach independent of Euclidean matrix multiplication.

In this paper, we define some transformations to get a connection between
Lorentz-Minkowski matrix multiplication and Euclidean matrix multiplication
which enables to obtain the fundamentals of our approach. We define Lorentz-
Minkowski scalar product and then introduce a transformation that allows us
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to write Lorentz-Minkowski scalar product in terms of Euclidean inner product.
Then we define Lorentz-Minkowski matrix multiplication and introduce two more
very alike transformations. These two transformations will allow us to represent
Lorentz-Minkowski matrix multiplication in terms of Euclidean matrix multi-
plication. The crucial example of this approach is that it is very easy to find
the unit matrix of Lorentz-Minkowski matrix multiplication without using sign
matrix that O’Neill used in [1]. It is possible to find it using these transforma-
tions and Euclidean unit matrix. Finally, we define matrix inverses considering
Lorentz-Minkowski product and find those inverses using our transformations.

2. Lorentz-Minkowski Scalar Product and a Transformation

In this section, we will define Lorentz-Minkowski scalar product. Then we
define a transformation that will allow us to connect it to Euclidean inner product.

Throughout this paper, unless stated otherwise, the vector space V= R" over
the field F' = R is considered.

Definition 1. Let n € N. For any vectors X = (z1,%2,...,%n), Y = (Y1,Y2,-- -,
yn) € R™ the Euclidean inner product is given as follows ([5]):

n
<X)Y >.= Z{L‘lyl
i=1
Let us denote the set of non-negative integers Nj.

Definition 2. Let n,v € Ny with n > v. For any vectors X = (x1,22,...,Ty)
and 'Y = (y1,y2,---,Yn) € R™, the Lorentz-Minkowski scalar product is defined

as follows ([5]):

v n
< X)Y >,= —Zwiyi + Z ZTiYi-
i=1 i=v+1

From now on, unless stated otherwise, we will assume that n € N and n >
v € Np.

Lemma 1. Let us define the transformation

¥ : R™ = R”
(1,9, ..., xpn) = Y (T1,22,...,2n) = (—Z1, =Ty ...y, —Tpy Tt ly - -y L) -

Then, v has the following properties:

1. v is a linear transformation.
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2. Y 1s an isomorphism.
3. =L
4. v 1is self-adjoint in Euclidean inner product.

Proof. Let X = (x;) € R" and Y = (y;) € R" be two arbitrary vectors and
A € R be an arbitrary scalar.

1. It can be seen that

VX +Y) =o((zi + i)

= (=21 = Y1, = T2 = Y2, -+, —Tv — Yo, o1 + Yoty - s Tn + Yn)
= (=21, =22, ..., — Ty, Tyil, -, Tn)
+ (=Y1, =Y2, - s —Tus Tug1s - - Yn)
= (X) + (V).
For any A € R, we can easily obtain ¢)(AX) = A\(X). Hence ® is a linear
transformation.

2. Let us suppose that ¥(X) = ¥(Y). Then we have:

(=21, =Xy e oy =Ty Tpgly e oy ) = (=YL, —Y2s - oy —Tuy Tt 1y -+, Yn)

which implies X =Y.

For surjectivity, whenever an arbitrary vector X = (z1, o, ..., x,) is given,
there is a (—x1, —x2,..., —Ty, Tyi1,...,2n) € R satisfying
U ((—x1, =2, ..y =Ty, Ty, Ty)) = X.

3. It is easily seen that ¢ ((X)) = X.

4. Calculations yield:
<YPY(X),Y >e=< (=21, —T2, ..., — Ty, Tyi1,- - Tn), (Yi) >e

=—z1.y1 + (—z2.y2) + ...+ (=2 Y) + Top1.Ypi1 + oo+ TnUn
= _yl'x1+(_y2'm2)+' . '+(_yu-$u)+yu+l-$u+1+- ot Yn Ty =< X, ¢(Y) >e -

Now, we will give our theorem that establishes the connection between Lorentz-
Minkowski scalar product and Euclidean inner product.
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Theorem 1. For any X = (z;) € R® and Y = (y;) € R", the equation
<X)Y >, =< ¢(X),Y >e=< X, (YY) >, is satisfied.

Proof. Let X = (z;) € R” and Y = (y;) € R" be two arbitrary vectors. From
Definition 2, we obtain:

v n
<SXY >, == myi+ Y wit
=1

1=v+1
=< w(X)a Y >,
=< X, YY) >, .
<4
3. Lorentz-Minkowski Matrix Multiplication
Let us recall Lorentz-Minkowski matrix multiplication.
Ay
A
Definition 3. Let A = . e R and B = [Bl By ... Bp] € ]RZ be arbi-
Am

trary matrices, where A; € R™ and (Bj)T eR, i=1,2....mj=1,2...,p).
The Lorentz-Minkowski multiplication of A and B is denoted by Ae, B and defined
as ([5])

<A,B>, <A,B>, ... <A,Bl'>,

<A9,BT >, <Ay,Bf >, ... <Ay,Bl>,
A.VB: . .

<An.Bf >, <Ay,B] >, ... <A, Bl'>,

Lemma 2. The transformation

6:R™ 5 R™
Ay Y (A1)
A A
PR Rl (4) = ¥ ( | 2)
Am V(A,,)

1$ a linear isomorphism.
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Aq By
A2 B2
Proof. Let A= | | | e R’ and B=| . | € R} be two matrices. Then
A B,
we can write:
A1+ By Y (A1 + By)
A + Bo Y (A2 + Bo
0(A+ B) =16 . = ( . )

Am + By, Y(Am) +Y(Bm)

Since % is a linear isomorphism (see Lemma 1), we have:

Y (A1 + By)

6(ALB) = T/J(A2.+B2)

(A + Brn)

[ ¥ (A1) + ¢ (By)
Y (Az2) + 1 (Ba)

as desired. The scalar multiplication is very similar, hence 0 is a linear transfor-
mation.

Ay
2
To show that this transformation is 1-1, suppose that A= | . | € R and

Am
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B = | . | € R are arbitrary matrices such that 6 (4) = 0 (B). Hence we get

Y (Ar) Y (B1)
P (Az) Y (B2)

64| e (B

implying for all i = 1,2,...,m, ¥ (A;) = ¢ (B;). Since 1 is an isomorphism, this
means that A; = B; for all i = 1,2,...,m and that is A = B. For any arbitrary
matrix X it is easily seen that 6 (9(X)) = X, proving surjectivity. <

Now we define another transformation which is very alike to the previous one.
Since the proof is very similar, we can omit it.

Lemma 3. The transformation defined as

¢: R — R

A=A A o 4] = 0@ = [[w(aD)]” D] [ (aD)]]

18 a linear isomorphism.

Lemma 4. Let A be a square matriz. Then
1. 6(A) = [¢ (A7),
2. ¢ (A) = [0(AT)]".

Proof.
Ay
A
L Let A= | | | €Rp. Then AT = [A7 4] ... AT]. It follows that
A,
T
o) = [ e o [e ]
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and

[0 (AT)]" =

2. Considering part (1), it is quickly proven by picking A = X7T.
<4

Lemma 5. Let 6 and ¢ be the transformations given in Lemma 2 and Lemma 3,
respectively. Then 6 =0~ and ¢ = ¢~ 1.

4. Building Matrix Theory over Lorentz-Minkowski Matrix
Multiplication

In this section, we will define the fundamentals of Lorentz-Minkowski (v)
matrix multiplication based on Euclidean matrix multiplication, unlike the direct
approach of [3]. It will be conducted by using the transformations defined in
Lemma 2 and Lemma 3 in the previous section.

Ay

Az
Theorem 2. Let A= | ~ | € R’ and B = [B1 By ... By| € R!. Then

A.m
Ae,B=0(A)eB=Ae¢(B).

Proof. Let us begin with showing that Ae, B = 6 (A)e B. From Definition 3,
we have:

<A,Bl'>, <A,BI>, ... <A,Bl'>,

<A9,BT >, <Ay,Bf >, ... <Ay, Bl'>,
A.VB: . .

<Am,Bf >, <An,Bj >, ... <Ay, Bl>,
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Here we can transform the Lorentz-Minkowski scalar product into Euclidean inner
product by using Theorem 1. Hence, we have:

[<¢(A1),Bf > <¢(A),B] > ... <¢(A1),Bp;>
. <t (Ag),Bl > <y (A2),Bf > ... <¢(A2),BL>

< $(4), BT > <6(Ap),BY > ... <¢(An), B >

[ (Ay)
Y (A2)

b (An)
=0(A)eB.

Now, let us show that Ae, B = A e ¢(B). From Definition 3 and again using
Theorem 1, we can write:

<Ay (BN > <Ane(BY) > . <ALy (BD) >
e | <A2BD) > <A (B) > L <A (B]) >
< Ao (BT > <A, (BN > .0 < Apw (BT >

=Ae¢(B).

<

Definition 4. The matriz I™" € R} is called the v—unit matriz if it satisfies
I e, A= Ae,I™ for every A e R.

Theorem 3. Let I,, be the Euclidean unit matriz. Then 0 (I,) = ¢ (I,,) is the
unit matriz in Lorentz-Minkowski matriz multiplication.

Proof. We shall begin with proving that 6 (I,,) = ¢ (I,,). Notice that in the
unit matrix the 1’s are equally distant from the row and columns. Hence the
transformations 6 and ¢ will result in the same matrix.

Now, we show that 0 (I,,) e, A. If we use Lemma 5, we can write:

0(I,) e, A=0(0(I,)e A

=I,e A
= A.
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For the right-hand side multiplication, we similarly get:
Ae,0(ln) =Ae, ¢(Iy)
= Ao, ¢ (¢ (In))
=Ael,
= A.
<4

Now, we can express the v—unitary matrix using our transformations (6 and
¢). We will do it the other way around to express our transformations using the
v—unitary matrix.

Theorem 4. For any (m x n) matriz A, 0 (A) = Ae I™" and
¢ (A) =1"" e A, where I""" denotes the (n x n) v — unit matriz.

Proof.
Ael™ = 971 (A) e, I™
— 7 (4)
and since § = #~! (see Lemma 5), we have A @ """ = §(A). The proof for ¢ is
very similar, so we omit it. «

This theorem will help us to have a better understanding of the transforma-
tions as shown in the following theorem.

Lemma 6. Let A € R?, and B € RY be two arbitrary matrices. The following
equalities are satisfied:

1. 0(Ae B) = Ae0(B),
2. ¢(AeB)=¢p(A)e B.
Proof.
1. By Theorem 4, we can write §(A e B) = (A e B) e ["”. Since Euclidean

matrix multiplication is associative, we have
O(AeB)=(AeDB)el™"
=Ae(Be ™).

By Theorem 4, this means that B e I"" = 6(B) and we obtain:

G(AeB)=(AeB)e ™
=Ae(Bel™)
= Aed(B).
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2. The proof is very similar to that of 1.

)|

Now we express Lorentz-Minkowski matrix multiplication by only using its
unitary matrix and Euclidean matrix multiplication.

Theorem 5. Let A € R}, and B € R be two arbitrary matrices. Then the
following equation holds:

Ae,B=(Ae[")eB=Ae(I""eB).

Proof. This can immediately be seen by using Theorem 2 and Theorem 4
with the associativity of Euclidean matrix multiplication. <«

Now we give a lemma about the matrix ™.
Lemma 7. The matriz I™" is Euclidean invertible and its inverse is I™".

Proof. Using Lemma 5 and Theorem 2,

TV @ [V — @ (In,l/) o, TV
— In o, idis

= In
and

TV @ [V — MV ., ¢ (In,l/)
=1""e, I,
= Im

as desired. «

Theorem 6. Let A be a square matrix with the size n X n. Then A is Fuclidean
invertible if and only if 0(A) is Euclidean invertible.

Proof. (=) Suppose that A is Euclidean invertible. By Theorem 4, we have
0(A) = AeI™". Besides, by Lemma 7, I"™" is Euclidean invertible. Thus 6(A) is
a multiplication of two Euclidean invertible matrices which implies #(A) is also
Euclidean invertible.

(<) Suppose that 6(A) is Euclidean invertible. By Theorem 4, we have
0(A) = A e I™ and when the equation is multiplied by I™" from the right
we get A = 0(A) e I (see Lemma 7). Hence §(A) is Euclidean invertible
and, by Lemma 7, I'"" is also Euclidean invertible. Hence A is the result of
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the multiplication of two Euclidean invertible matrices, implying A is Euclidean
invertible. «

Now we will give a theorem to connect our transformations when A is an
invertible matrix.

Theorem 7. Let A € R be an invertible matriz. Then the followings hold:
1 $(A™Y) = (8(4)) 7,
2. ¢(A) = (o(A~1))
Proof.

1. By Theorem 4, we have 0(A) = A e I""”. Since we consider Euclidean
inverses, we can write:

(O(A) =1 Le AL,
By Lemma 7, we can substitute (I"™*)~! = I"™" to get
(0(A) P =1"" e A7,
which allows us to write I"™" @ A™1 = ¢(A~1) to get

(0(4)) ™ = $(A™).

2. Let X be an Euclidean invertible matrix. By picking A = X! in part 1,
we will obtain the desired result immediately.

Now we will define invertibility in Lorentz-Minkowski matrix multiplication.

Definition 5. Let A be a n x n square matriz. If there exists a matriz A=Y of
the same dimension satisfying

Ao, A7V =" = A7V o, A,

then the matriz A is said to be v—invertible and A~ is called the v—inverse of
A.

Now we will give a theorem to have a criterion for v—invertibility using our
transformations given in Lemma 2 and Lemma 3.

Theorem 8. Let A be a square matriz, then A is v—invertible if and only if
0 (A) is Euclidean invertible.
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Proof. Let A be a n X n matrix.
(=) Suppose that A is v—invertible. Then there exists A~ such that

Ae, A7LV = v,
We know that Ae, A= =0 (A) e A=1¥, Thus, we have
6(A)e ALV =™,
Euclidean multiplying this equation from the right by I™" results in
(0(A) e A1) @IV =™ o [™V = I,.

This implies that 6 (A) is Euclidean invertible and that its inverse is A1 o ™",

(<) Suppose that 6 (A) is Euclidean invertible. Then, there is a matrix
[0 (A)]"! such that 6 (A) e [0 (A)]™" = I,. Now denote [0 (A)]"" o I = X and
notice that

Ao, X =0(A)e X
—0(4)e ([0(4) " o)
- (9 (A) o0 (A)]‘1> o IV
=1I,el™
=1,

On the other hand, we obtain:

= (o) o0 (4)) 0 1

=I,eI™

— v
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<

While proving this theorem, we have also found the v—inverse of the given
matrix. Let us state that as a corollary.

Corollary 1. Let A be an Euclidean invertible matrixz. Then v—inverse of A can
be given as follows:

AL =6 (9(A)Y).

Corollary 2. The v—inverse of a matriz is unique and left and right inverses
are the same.

In fact we can make the v—invertibility criterion even simpler. The following
theorem does that.

Theorem 9. A square matriz A is v—invertible if and only if it is Fuclidean
invertible.

Proof. Immediately seen when Theorem 6 and Theorem 8 are used. «

Lemma 8. Let A be an Euclidean invertible matriz. Then the e, inverse of A
can be found from the following equations:

1. A7 =4 (cb(A*l)),
2. AT = [6(0(A)) "
Proof.

1. Let A be Euclidean invertible. Then by Corollary 1, we have A~ =
0 ([0(A)]~'). Here by Theorem 7, [§(A)]~! can be written as ¢(A™"), from
which we can get A5 =6 (¢(A™1)) as desired.

2. By Corollary 1, we have A= = 6 ([#(A)]™!). Then, in part 1 of Theorem 7
if we pick A as [0(A4)]7! we get

which can be written as ¢[(8(A))] = (9([0(A)] ™)) ~. Here taking Euclidean
inverses of both sides results in

GIOAN) ™ = 0 ((0(4) ) = A

as desired.
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