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Abstract. This paper presents the generalized Hyers-Ulam stability of the n-dimensional
quadratic functional equation

¢ (Z%) + Y lai—z)=n) dlx)
im1 i=1

1<i<j<n

in modular space, in S-homogeneous Banach space and in fuzzy Banach space.
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1. Introduction and preliminaries

The research on modular and modular spaces as extensions of normed spaces
was first done by Nakano [13]. Since the 1950s, numerous eminent mathemati-
cians [3, 16, 20] have worked on it diligently. Orlicz spaces and interpolation
theory are two examples of applications for modular and modular spaces in
[10, 11, 16]. Now, we present the definition, properties and usual terminologies
of the theory of modular spaces.

Definition 1. Let Y be an arbitrary vector space. A functional p : Y — [0,00)
is called a modular if for arbitrary u,v € Y :

1. p(u) =0 if and only if u=0.
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2. plau) = p(u) for every scalar o with || = 1.

3. plau+ Bv) < p(u) + p(v) if and only if a+ =1 and o, 5 > 0.
If (3) is replaced by:

4. plau+ Pv) < ap(u) + Bp(v) if and only if a+ =1 and o, f > 0, then we
say that p is a convexr modular.

A modular p defines a corresponding modular space, i.e., the vector space Y, given
by

Y,={ueY :p(Au) = 0 as A — 0}.
A function modular is said to satisfy the A, -condition if there exists 7, > 0 such
that p(nu) < m,p(u) for allu €Y,.

Definition 2. Let {u,} and u be inY,. Then:

1. The sequence {uy}, withu, €Y,, is p-convergent to v and we write: u, — u
if p(up —u) = 0 asn — oo.

2. The sequence {uy}, with u, €Y,, is called p-Cauchy if p (up — um) — 0 as
n:m — 0o.

3. Y, is called p-complete if every p-Cauchy sequence in Y, is p-convergent.
Proposition 1. In modular space,
o Ifu, L and a is a constant vector, then u, + a 5w+ a.

. Ifun£>u andvngv, thenaun—l—BUnﬁ)au—l—ﬂv, where oo+ S < 1 and
a,B > 0.

Remark 1. Note that p(u) is an increasing function, for all uw € X. Suppose
0 < a < b. Then property (4) of Definition 1 with v = 0 shows that p(ax) =
p (gbu) < p(bu) for all w € Y. Moreover, if p is a convexr modular on'Y and
la] <1, then p(au) < ap(u).

In general, if \; > 0,1 =1,...,n and A\1, A, ..., Ay < 1, then p(Arug 4+ Aqug+
s Apty) < Aip(ur) + Aep(uz) + -+ -+ App(uy).

If {uyn} is p-convergent to u, then {cuy,} is p-convergent to cu, where |c| < 1.
But the p-convergence of a sequence {u,} to u does not imply that {ouy} is
p-convergent to au for scalars o with |a] > 1.

If p is a convex modular satisfying Ayn-condition with 0 < 1, < n, then

1

p(u) < mpp(—u) < T—np(u) for all u. Hence p = 0. Consequently, we must have
n n

Tn > n if p is a convexr modular.
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In many settings, the study of stability problems relies largely on functional
equations. Ulam was the first to raise concerns about the stability of group homo-
morphisms, which allowed for the study of stability problems (see [19]). Hyers [7]
solved the stability issue by examining Cauchy’s functional equation in Banach
spaces. Aoki [1] built on Hyers’ work by supposing an infinite Cauchy difference.
Rassias [17] reported work on additive mapping, and Gavruta [6] gave similar
results in more detail. The general solution and Hyers-Ulam-Rassias stability of
finite variable functional equations were reported by Nakmahachalasint [14] in
2007 (see also Khodaei and Rassias [9]), Najati and Moghimi [15], Kenary [18],
Gordji [5], and the references therein all focused on specific problems of stability
with additive functional equations. The notion of generalized Hyers-Ulam sta-
bility comes from historical contexts, and this problem might be addressed for
various functional equations types. A biadditive symmetric function is connected
to the functional equation (see [2, 8]). Naturally, each equation is referred to as
a quadratic functional equation

¢(z +y) + oz —y) = 20(z) +2¢(y). (1)
In the present paper which is made up of 4 sections, we study the stability of the
functional equation

¢ (Z x> + > blwi—z) =n)_ dlw) (2)
=1 =1

1<i<j<n

in modular space, with or without A,-condition, in S-homogeneous Banach space
and in fuzzy Banach space.

2. Stability of (2) in modular space without A,-condition

Theorem 1. Let X be a linear space, p be a conver modular and Y, be a p-
complete modular space. Let ¢ : X™ — [0,00) be a function such as

(T, xy) = .go(njxl,nj:@,...,njxn) < 00 (3)

1
and lim ——¢ (nkml,--- ,nkxn> =0 for all z1,...,x, € X and n be a fized
s (n?)
nonnegative integer with n > 2.
Let ¢ : X =Y, be a mapping such that

p ¢><Zwi>+ Yo b@wi—w)—nd ¢@)| <el@,...,zn) (4
i=1 i=1

1<i<j<n
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forallxyi,...,x, € X. Then there exists a unique mapping h : X —'Y, satisfying
(2) and
n 1
- — <= ).
p (600) = 5 00) ~ hw)) < (a0 )
Proof. Letting 1 =z =.... =z in (4), we get:

Hence

p(p(nz) —n’é(z)) < (-, x) (6)
where ¢(z) = ¢(x) — 325(0).

We can write without using the A,, condition, and remarking that
sl L <1

j=0 (n2)itT =

1 - ~ mln2d(niz) — d(nitlz
p (Gand (o) - d(o)) = p 0 A )

for all x € X, and all positive integers m.
Let m and p be positive integers with m > p. We have

bma) dern)\ _ (1 (b rown) o
p( (n2)™ (n2)? ) =p ((nz)p ( (n2)"P ¢ (n” )>
m—p—1

1 . ) 1 1

_ p+J p+J — k k

§n2 Zo (n2)p+j80(n Tyoo T x)—n2 E nZ)kgo(n Tyooy M x)
]:

¢ (n"x)
(n*)™

$(n™x)

Then, by (7) and (3), we conclude that {
m
Y, which is p-complete, then the sequence { 7)™ } is p-convergent to h(x).
m

} is a p-Cauchy sequence in

Hence o .
h(z) = p — limy,— 00 %, ie. limy, .o ((b(slng)nf) — h(x)) =0 forall x € X.
Moreover, by apply the Fatou property, we get:

mmm—éu»snmmm(émwﬂ—émg

n—soo <n2)m
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1 & 1
<7§ el = — .
—_— ’I’L2 7n x) n21/}(x7 7:’8)

Jj=

0
Therefore, we arrive at (5). Now we prove that h satisfying (2). For all positive
integer k, we note that:

=1 1<i<j<n i=1
2 " h(nk S T;
=3Z-nt4’ <h (Zx> - (%)?1 )>

=1
2 h(nk Ti— Tj
+ 32 _n 4 1<Z< P <h($z — ;) — # ((nQ)k )>
2n " 5 nkzcZ
)
=1
2 é(nk D i1 Ti) g%(n (z; — zj) P(n"x;)
3n2 —n + 4" (”2)k1 ! 13;371 (n?)" ) = )¢
S DT
=32 _nt4’ <h (;xz> B (n?) 1 )
2 L é(” (i — zj)
ETR— 1§;gnp <h(3€z i) (n2)k )
2n - n"x;
3n2 —n+4 Zp (h(ﬂm gﬁ(( 2)k )
i=1
2 p(n* S0 2) d(nF(z; — ;) " p(nFr)  nd+n?—2n
e L R G P (2 LD D A (R SO
- ¢(n* Yo, wi)
e (v (57) - )
2 n"(x; —x
302 —n 1t > p <h(:1:@- ) i ((712)1@ j)>
1<i<j<n
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2(n?)k — 2 n3 +n? —2n
4(

+ (3n2—n+4)(n2)k:p n+1)((n2)k—1)¢(0)) — 0 as k — o0,

(because ¢(0) € Y, and limj_, % = 0. Then we have:

h(zn::m)-i- Z h(a:i—xj)—nzn:h(xi)zo.
=1 1<i<j<n i=1

Then h is n-dimensional quadratic mapping. Finally, assume that h; and ho are
n-diemensioinal mapping satisfying (5). We have

h(nz) — n’h(z b (nm ) (e
(s oS5 4 (28

b (nmtly b (nm g
Sn14p<h(nx)_¢((n2)m)> +1p<¢i)_h(@~)> — 0 as m — oo.

Then h(nz) = nh(x), and we have:

hy(x) — ha(x) 1 (b (nFz) & (nFa) 1 [ (nFz)  ho(nFa)
p<l - >:p<2< CIaTL >+2< T ))

nFx b (nkx b (nFz n*u 5
< %P (hl(iz)k ) ¢(§”L2)k)>+;p <¢(Ez2)k) N h2(752)’€ )> = ;‘(ni)k {p <h1 <"k”“’> —¢ (”kx))

P (h2 (”k”““) ‘é(”k“’»} = v;mi)’”/’ (”kx ”k”“’> - Z( Q;H’““’( T, ’””kx)
j=0
= ! K4 (nla:, nla:> — 0as | — oo.

This implies that hy = he and this completes the proof. Now, if we put ¢ =¢ > 0,
we have the classical Ulam stability of (2) in modular space without A,,-condition.
<

Corollary 1. Let X be a linear space, p be a convexr modular and Y, be a p-
complete modular space. Let ¢ : X — Y, be a mapping satisfying ¢(0) = 0

and
p ¢<Zl’i>+ Y. dl@i—x)—n) ¢w)| <e
i1 i=1

1<i<j<n
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for all x1,..., 2, € X and n be a fized positive integer with n > 2. Then there
exists a unique n-dimensional quadratic mapping h : X — 'Y, such that

n

2(n+1)

p (¢(w) - $(0) — h@)) <

Corollary 2. Let X be a normed linear space, p be a convexr modular and Y, be
a p-complete convexr modular space. Let 0 > 0 and 0 < p < 2 be real numbers.
Assume that ¢ : X =Y, is a mapping satisfying

¢ (Z mz) + Y pwi—a) —n) dx)
i=1 i=1

1<i<j<n

0 (][ + llz2ll?, - . [lzn?)

forall x1,...,x, € X. Then there exists a unique n-dimensional quadratic map-
ping h : X — Y, satisfying

n nb||z|?

p (gb(a:) - mqﬁ(o) - h(x)) < T

3. Stability of (2) in modular space with A,-condition

Theorem 2. Let X be a linear space and Y, be a p-complete convexr modular
space satisfying A, -condition with k, > n. Let ¢ : X" — [0,00) be a function
with

ry X2 Tn

lim k2™ LIy —
B R N . (8)

B\ oz = x
n L DY < oo 9
Z(n) So(n“n“ ’nz)< 9)

i=1
forallxy,...,xp € X.
Let ¢ : X =Y, be a mapping satisfying $(0) =0 and

¢<Z$i>+ Z ¢ (x; — xj *anb ) | <eo(Tn,...,z,). (10)
i—1

1<i<j<n

Then there erists a unique n-dimensional mapping B : X —'Y, such that

p(6(x) — B _2k22<k3> (G 2), wex.
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Proof. Letting 1 = 29 = --+ = z, = x in we get: p(¢(nz) — n?p(z)) <
(z,z,---,z), for all z € X, and then it follows from the A, condition and the
convexity of the modular p that

o (0080 (20)) = (o (% ()~ ()
for all x € X. So for all n,m € N,with n > m, we have:

re(E)- s () <K o <n%>—<n2>w<nnis>>
ski”"“éj(

3 m-+n j—m
. » <gm 3 L
nl—i_m’ 7 n2+m ()0 nj ) 7 nj
Jj=m+1
pm 3N T T
<o E _n gp(—.,--- >—>Oasm—>oo
km+ n nJ nJ
j=m+1

n
because — < 1.

kn
Thus the sequence {(nQ)mqb (nim)}m is p-Cauchy sequence in Y, which is p
complete and so it is p-convergent to a mapping B : X — Y,. Then we write:

a1 2\m i)
B(x) = p— lim (n*)"6 (—
According to the A,, condition, we obtain the following inequality:

p(6(2) — B@) < 50 (20(0) 2 3" (2)) + 20 (2- 026 ()~ 2B())

<o (0~ 027 () + o (07 (57) - B@)
Ui 3\ 7 X X X
<3 (8Y () (o () - 00)

n

for all x € X. Taking m — oo we obtain the estimation (11). Now, we claim that
the mapping B is n-dimensional quadratic. Using the A,-condition we have:

AGRIC- K ¢(min;$j)—n<n2>mi§;¢(ﬁ)

1<i<j<n
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)

T1 X9 x
Skacp( — n>—>0asm%oo
n™’ pm nm

for all x1,xo, ...,z, € X. And we have:

2 n
Pl —nv4 —n+4 (le> 32 —n+4 Z B (@i =) n2—2+4;3(xi)

1<i<i<n

S5 —2n 4" (B (é x) - ()¢ (ZZLJE»

L v X;p (B - (s (j,n))
e (ERE) e 3 () nerm e

R
3n2—n+4 s nm
1<i<j<n

for all z1,xs,...,x, € X. Taking the limit as m — oo, one sees that B is n
dimensional quadratic. To show the uniqueness of B, we assume that there
exists an other n-dimensional quadratic mapping B’ : X — Y, which satisfies the

inequality:

p(oa) ~ B'@) < T, (4) o(5 &) ze X,

We have:
"B (o) 200" (55

)< e (2o
%g el a5

p(B(x) -

2m
<2570 (8 ()~ () + 50 (0 ()~ 5 (30)
2m n 3
L) oo )
HEST () f%)
n j=m+1
k2 nm SR <k§b> x' £)—)Oausm%O
= n n]’ "nJ '

njm—l—l
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Then
B(z) = B'(z)
and this complete the proof. «
Corollary 3. Suppose X is a normed space with norm ||-|| p be a convex modular
satisfying and Y, be a p complete convex modular space satisfying A, -condition

3
n

k

with ky, > n. For given real numbers § > 0 and p > log,, () Ifp: X =Y, s
n

a mapping such that:

p ¢<Z$i>+ S pmi—z)—nd ¢@) | <O(lallf + -+ llaall”)
i=1 1<i<j<n i=1

for all x1,x2,...,x, € X, then there exists a unique n-dimensional quadratic
mapping B : X —'Y, such that

0k ks »

— < —— = .
plo(e) = B(o)) < gl 2slll” for all 2 € X
4. Stability of (2) in S-homogeneous spaces

Definition 3. Let X be a linear space over C. The application |- || : X — [0, 00)
is an F-norm if

1. ||z|| = 0 if and only if u =0,

2. |lau|| = ||ul| for every v € X and every a with |a| =1,
3. Nu+v|| < ull + ||v]| for every u,v € X,

4. |lanul| — 0, implies o, — 0,

5. |lauy|| — 0 implies u,, — 0.

Let d(u,v) = ||u—vl||. Then (X,d) is a metric space which is called F-space if d
s complete.

If |low|| = |a|®||u|| for allu € X and o € C, then || - || is called 3-homogeneous
(8>0).

A B-homogeneous F'-space is called a 5-homogenous Banach space.
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Remark 2. If p is a convex modular, then
|ull, = 1nf{)\k > O/p( ) < 1} ,u €Y,

is an F-norm on'Y, that satisfies |aul|, = |a|*||ul|,. Hence, ||-||, is k-homogeneous.
In the case k = 1, this norm is called the Luxembourg norm.

Theorem 3. Let X be a linear space, Y be a S-homogeneous complex Banach
space (0 < B <1) and ¢ : X" — [0,00) be a function such that

w(xl,..., Z

]=1

n] Yo, ... ,nj_lwn) (12)

forall zy,...,x, € X. Let ¢ : X — Y be a mapping satisfying ¢(0) =0 and
qb(Za:Z)—i- Z o (x; — —anﬁ <p(T1,...,20) (13)
i=1 1<i<j<n

for all x1,..., 2y, € X and n be a fized positive integer with n > 2. Then there
exists a unique mapping h : X — 'Y satisfying (2) and

lo((x) = h(z)] <9 (z,...,z). (14)

Proof. Letting 1 = x9 =--- =, = x in (13), we get

|p(nz) — n2¢(x)H <ep(x..,z).

Then . )
00n) — 6(2)| < el ,2) (15)
By induction on k € N, we get
1 ¢(k)—¢<><i e ) (16)
(n2)k n"x x _Al(nzﬁ)jgpn T,...,n " x
=

for all x € X and all positive integers k. For k = 1, we obtain (15). Assume that
(16) holds for k € N. Then, we have

Mlkﬂqs(nk“x) b(z)|| =

)
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o(n.nz)

+%¢(mf) — (@)l < n%ﬁ\l ((n?)’“ - ¢(””)) H

Hl2po(nz) - ||<Z e ()
) kA1 . ‘
+—=p(x,...,x) = o (n e, i)
e 2 Gy )

Hence (16) holds for every k € N.
Let m and [ be nonnegative integers with m > [. We have

¢ (nmx) ¢ (n'z) ¢ (Nt nlz)
=l < a0 0) ”)

(n2)™ (n2)!

m—l m
1 ; 1
-1 JH-1) k—1 k—1

5 ( Ty x)— E 7kg0<n Ti...,m x)

]:1 n 5] k=l+1 (n?B)
(17)

¢ (") | .

Then, by (12) and (17), we conclude that the sequence A is a Cauchy

sequence in Y, which is complete. So, there exists a mapping h : X — Y defined
by

h(z) = lim ¢(nmx)$ € X.

m—oo (n2)™ 7

Letting [ = 0 and passing to the limit as n — oo in (17), we get (14). Now, we

show that h satisfies (2). We write
Z (™ D i i)
(n?)™

||h<Z:U¢>+ > h(wi— ) nZh ) || < ||k
=1 =1

1<i<j<n

Ly )_«m(<>—-‘+nﬁz|,m ”)ifj)u
1<i<j<n
+H¢(” 22:1 | Ti) + Z ¢(n x’_xﬂ))_nz(b(n#ij)HAOasm%oo.
(n 1<i<j<n =1 (TL )
Then, we get

Z Z h(z —nZh(a:i)zo
i=1

i=1 1<i<j<n
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for all z1,...,z, € X.
Next, let h; and he be mappings satisfying (14). We have

h m _ ¢ m h m _ ¢ m
L e I e
2 = 1 , A
(7)™ & (n28)7” (0" e, )
=2 Z ( zﬁ)kcp(nk_lx, ,nk_1m> — 0 as m — o0
k=m+1

for all z € X. From which it follows that h; = hy. «

Now, we obtain a result on classical Ulam stability of n-dimensional quadratic
functional equation by putting ¢ = ¢ > 0.

Corollary 4. Let X be a linear space, Y be a B-homogeneous complex Banach
space with 0 < f < 1. Let ¢ : X — Y be a mapping satisfying $(0) = 0 and

¢ (Z%) + Y dlai—a)—n) ¢w)|<e
i=1 1<i<j<n i=1

forall xi,...,x, € X. Then there exists a unique n-dimensional quadratic map-
ping h: X =Y such that

l6(@) = h(@)]| € —5—iz € X.

5. Fuzz stability of (2) in fuzzy Banach space

The following theorem is a fundamental result in fixed point theory.

Theorem 4 ([4]). Let (X,d) be a complex generalized metric space and let J :
X — X be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element u € X, either d (J”u, J"+1u) = o0, for all non-negative
integers n or there exists a positive integer ng such that

1. d (J"u, J"+1u) < oo for all n > ng;
2. The sequence {J"u} converges to a fized point v* of J;
3. v* is the unique fized point of J in the set Y = {v € X/d (J™u,v) < co};

4. d(v,v*) < 2d(v, Jv) for allv €Y.
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We use the definition of fuzzy normed spaces.

Definition 4. Let X be a real space. A function N : X x R — [0,1] is called a
fuzzy norm on X if for all u,v € X and all s,t € R,

1. N(u,t) =0 fort<0;
2. u=0if and only if N(u,t) =1 for allt > 0;
3. N(cu,t) =N (u, ﬁ) if ¢ #0;
4. N(u+wv,s+c¢)>min{N(u,s), N(v,c)};
5. N(u,-) is a non-decreasing function of R and lim;_,o N(u,t) = 1;
6. for w# 0,N(u,.) is continuous on R.
The pair (X, N) is called a fuzzy normed space.
Example 1. Let (X,||.||) be a normed linear space Then

t . .
N(u,t) = § Bl @€ x>0
0 u€e X;t<0

s a fuzzy norm on X.

Definition 5. Let (X, N) be a fuzzy normed vector space. A sequence {u,} in
X s said to be convergent to u € X if lim N(u, —u,t) =1 for allt > 0 and
n—o0

we denote it by N — li_r}n un, = u. A sequence {u,} in X is called a Cauchy
m—0o0

sequence if 1111)1 N (up — Um,t) = 1 for all t > 0. The fuzzy norm is said to
n,m—00

be complete if each Cauchy sequence is convergent, and the fuzzy normed vector

space is called a fuzzy Banach space.

Theorem 5. Let X be a real vector space, and (Y, N) be a fuzzy Banach space.
Let ¢ : X™ — [0,00) be a function with (0, ...,0) =0 and there exist 0 < L < 1
such that

w(lev"'axn)S%w(nl‘la"'vnl‘n) (18)

for all x1,...,z, € X, where n is a fized positive integer with n > 2.
Let ¢ : X — Y be a mapping that satisfies

n n ;
N ¢(;xi)+ Z ¢($i_xj)—n;¢($i),t Zt+¢(ﬂv1,--.,$n) (19)

1<i<j<n
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for all x1,... 2, € X and all t > 0. Then there exists a unique mapping h :
X =Y satisfying (2) and

n?(1 — L)t
n?(1—L)t+ Ly (x,...,z)’

The mapping h is defined by h(x) = N — lim, 00 (n2)m 1) (i) .

nm

N(¢p(x) — h(z)) > reX,t>0. (20)

Proof. Letting 1 =z =... =z, =0 in (19), we get

N ((W) ¢(O),t> >1, >0

So ¢(0) = 0. Replacing (x1,z2,...,2,) with (z,...,z) in (19), we get

S0 N (#(a) = n26(0),t) = oty for all 7 € X.

Consider the set S = {p: X — Y} and introduce the generalized metric on S:

dfu0) = inf {1 € R /Nola) ~ aa)opt) 2 gt sa e e o)

where, as usual, inf() = +oo. It is easy to show that (S, d) is complete (see
Lemma 2.1 in [12]).
Now we consider the linear mapping : J : S — S such that
9 (X
Jp(x) =n"p (5)
forall x € X .
Let p,q € S be given such that d(p,q) = . Then N (p(x) — q(x),et) >

for all x € X and all ¢ > 0. Hence

t+¢($a... ,x)
N (Jp(z) — Jq(z), Let) = N (nzp (%) —nq (%) ,Lst)
Lt

Q0T rt e

2

for all z € X and all ¢ > 0. So d(p,q) = ¢ implies that d(Jp, Jq) < Le. This
means that d(Jp, Jq) < Ld(p,q) for all p,q € S.
It follows from (21) that

Lt
N(¢(x)_”2¢<z>’qﬂ> = L—;er(n@,---,@)
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Lt
L t

> pu—

for all z € X and all t > 0. So d(¢, J¢) < L.
By Theorem 4, there exists a mapping h : X — Y satisfying the following:

1. h is a fixed point of J, i.e.

x
h (E) = Eh(m), for all z € X.

The mapping h is a unique fixed point of J in the set
M = {p € S;d(¢,p) < oo}

this implies that h is a unique mapping satisfying (5) such that there exists

t
a p € (0,00) satisfying N (¢(x) — h(z), ut) > P Pa—— forall x € X.

2. d(J"¢p,h) — 0 as m — oo. This implies the equality
N — im0 (n?)™¢ (%) = h(z) for all z € X.
n

1 L
3. d(¢,h) < ﬁd (¢, J¢), which implies the inequality d(¢,h) < 7712(1 yyt

This implies that the inequality (20) holds. By (19) we have

v {tme (B2 ) o Y o5

1<i<j<n
nn2mn¢xi,n2mt>2 t
) ; <”m) ) t—i—w(%%)
and so
vy (B2 ) 3 6B
1<i<j<n
t

) (n2)mzn:¢(;;>,t> - L(n2)m
= N (

(n?)™
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Since
t
lim (n2)m -1
m—00 t L\™ ’
(nQ)m + ﬁ w(x17 7«7771)

it follows that
h<2xi)+ Z h(:ci—xj)—nZh(xi):()
i=1 1<i<j<n i=1

Finally, to prove the uniqueness of h, we assume that hy; and ho are two mappings
satisfying (20). Then

N (ha(a) = ha(2),28) = N ()™ (b () = (=) ) +2¢)
zmin {N ()" (0 () =1 () ) 1) ¥ (09" (0 () =2 () 1)}
N n?(1— L) (n2t)m N n*(1—L (nZt)m
T D A L0 (i) T 20— Dt + () v (e

— 1 as m — oo.

This yields hi1 = hy. <«

Corollary 5. Let X be a real normed space, and (Y, N) be a fuzzy Banach space.
Let 0 > 0 and r > 2 be a real number. Let ¢ : X — Y be a mapping satisfying

¢ (Z%) + Y dmi—z)—n) ()
=1 =1

1<i<j<n

>

Tt Ozl + -+ anll)
forallxy,...,x, € X andt > 0. Then there exists a unique mappingh : X — Y
satisfying (2) and
(nr — nQ) t

e X andt > 0.
(n" —n2)t+ Onl|jz||"’ . an

N(o(z) = h(z),t) >

Proof. the proof follows from Theorem 5 by taking ¢(x1,--- ,z2) = 0 (||z1]|P, - - -, [|[zn][P)
forall x1,--- ,op € X, and L =n?>"". «
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