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Solution of Fourth Order Parabolic Partial
Differential Equation Using Haar Wavelet and
Finite-Difference Method

A. Khan, A. Raza*

Abstract. In this paper, we proposed a method based on Haar wavelet embedded with
finite-difference approach for solving fourth order parabolic partial differential equation.
We approximate space derivative by Haar wavelet and time derivative by finite-difference
to find the solution. Further, to validate the accuracy and efficiency of the proposed
method, we provide examples and compared our maximum absolute errors with existing
methods such as parametric septic splines [7], sextic spline [8], parametric quintic spline
[9] and Quintic B-Spline [10].
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1. Introduction

We consider the following fourth order parabolic partial differential equation
(PDE)

∂2u

∂τ2
+ µ

∂4u

∂x4
= f(x, τ), x ∈ (0, 1), (1)

with initial conditions

u(x, 0) = g0(x), uτ (x, 0) = g1(x), (2)

and boundary conditions,

u(0, τ) = f0(τ), uxx(0, τ) = p0(τ), τ > 0. (3)
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u(1, τ) = f1(τ), uxx(1, τ) = p1(τ), τ > 0. (4)

The equation of the form (1) occurs in the mathematical modelling of undamped
transverse vibration of a flexible straight beam, µ is the ratio of flexural rigidity
of the beam to its mass per unit length, u is the transverse displacement of the
beam, x and τ are space and time variables, respectively. g0(x), g1(x) are the
continuous functions of x and f0, f1, p0, p1 are the continuous function of τ .

Solution of fourth order parabolic PDE have been proposed by many researchers
such as Fairweather and Gourlay [1] applied explicit and implicit finite difference
method. High accuracy method was given by Douglas [2], stable implicit finite
difference method was proposed by Evans and Yousif [3]. Adomain decomposi-
tion method was given by Wazwaz [4], Alternating group explicit method which
achieved better accuracy level was given by Adomain and Rach [5], Jain et al.
[6] proposed direct and splitting approach finite difference method and Khan and
Sultana [7] presented the method based on parametric septic spline. Three level
methods based on sextic spline and parametric quintic spline have been given
by Khan et al. [8] and Aziz et al. [9]. Quintic B-Spline method was given by
Siddiqui and Arshed [10]. In this paper, we proposed Haar wavelet for approx-
imation of space derivative and finite difference method for time derivative to
solve the fourth order parabolic PDE.

2. Haar Wavelet

Nowadays, the Haar wavelet is becoming very popular tool for solving dif-
ferential equations. Many researcher proposed various techniques based on Haar
wavelet to solve the ordinary and partial differential equations, fractional order
differential equations as well as integral equations. Islam et al [11] solved second
order parabolic PDE using Haar and Legendre wavelet, Lepik [12] solved PDE’s
using two dimensional Haar wavelet, Raza and Khan ([13], [14] and [15]) solved
neutral DDE and higher order BVP’s respectively using Haar wavelet, Kumar
and Pandit [16] proposed composite numerical scheme for the coupled Burgers
equation, Jiwari ([17], [18]) proposed quasi-linearization approach and hybrid
numerical scheme respectively to solve the Burgers equation, Kumar and Pandit
[19] proposed an efficient algorithm based on Haar wavelet to solve Fokker-Planck
equations. More literature on wavelet is given by Ahmad and Shah [20] and Lepik
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and Hein [21]. The Haar wavelet family for x ∈ [0, 1] is defined as follows:

Hi(x) =


1, ν1(i) ≤ x < ν2(i),

−1, ν2(i) ≤ x < ν3(i),

0, otherwise,

(5)

The integration Pi(x) of Haar wavelet can be obtained as follows:

Pi(x) =


x− ν1(i), ν1(i) ≤ x < ν2(i),

ν3(i)− x, ν2(i) ≤ x < ν3(i),

0, otherwise.

(6)

Further, the double integration Qi(x) of Haar wavelet can be obtained as follows:

Qi(x) =


1
2(x− ν1(i))2, ν1(i) ≤ x < ν2(i),
1

4m2 − 1
2(ν3(i)− x)2, ν2(i) ≤ x < ν3(i),

1
4m2 , ν3(i) ≤ x < 1,

0, otherwise.

(7)

The triple integration of Haar wavelet can be obtained as follows:

Ri(x) =


0, x < ν1(i),
1
3! [x− ν1(i)]

3, ν1(i) ≤ x < ν2(i),
1
3! [(x− ν1(i))(x− ν2(i))

3], ν2(i) ≤ x < ν3(i),
1
3! [(x− ν1(i))(x− ν2(i))

3 + (x− ν3(i))3], ν3(i) ≤ x.

(8)

The fourth order integration of Haar wavelet is given by

Si(x) =


0, x < ν1(i),
1
4! [x− ν1(i)]

4, ν1(i) ≤ x < ν2(i),
1
4! [(x− ν1(i))(x− ν2(i))

4], ν2(i) ≤ x < ν3(i),
1
4! [(x− ν1(i))(x− ν2(i))

4 + (x− ν3(i))4], ν3(i) ≤ x.

(9)

The collocation grid is given as

X(i) =
2i− 1

m
, i = 1, 2, . . . ,m

and the time disctetization is given by

τ(i) =
i

N
, i = 0, 1, 2, . . . , N.
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3. Method for Solution

To solve the fourth order parabolic PDE, we apply finite difference method to
discretize time derivative and Haar wavelet to approximate the space derivative.
Let us consider the equation (1) with initial and boundary conditions (2)-(4).
To solve the problem, we assume that

uxxxx(x, τ) =
N∑
i=1

ai(τ)Hi(x). (10)

Now integrating equation (10) four times from 0 to x, we get

uxxx(x, τ) =

N∑
i=1

ai(τ)Pi(x) + uxxx(0, τ), (11)

uxx(x, τ) =
N∑
i=1

ai(τ)Qi(x) + xuxxx(0, τ) + uxx(0, τ), (12)

ux(x, τ) =
N∑
i=1

ai(τ)Ri(x) +
x2

2
uxxx(0, τ) + xuxx(0, τ) + ux(0, τ), (13)

and

u(x, τ) =

N∑
i=1

ai(τ)Si(x) +
x3

6
uxxx(0, τ) +

x2

2
uxx(0, τ) + xux(0, τ) + u(0, τ). (14)

Now, to find the uxxx(0, τ) integrating equation (11) from 0 to 1 and substituting
the values from equations (3) and (4), we get

uxxx(0, τ) = p1(τ)− p0(τ)−
N∑
i=1

ai(τ)Qi(1) (15)

Putting the value of uxxx(0, τ) in equation (13), we get

ux(x, τ) =
N∑
i=1

ai(τ)Ri(x) +
x2

2
(p1(τ)− p0(τ)−

−
N∑
i=1

ai(τ)Qi(1)) + xuxx(0, τ) + ux(0, τ). (16)
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To find the ux(0, τ) integrating equation (16) from 0 to 1 and substituting the
values from equations (3) and (4), we get

ux(0, τ) = f1(τ)− f0(τ)− 1

2
p0(τ)− 1

6
(p1(τ)− p0(τ)−

−
N∑
i=1

ai(τ)Qi(1))−
N∑
i=1

ai(τ)Si(1). (17)

Putting the values of ux(0, τ) and uxxx(0, τ) from equation (17) and (15) in
equation (14), we get

u(x, τ) =

N∑
i=1

ai(τ)Si(x) +
x3

6
(p1(τ)− p0(τ)−

−
N∑
i=1

ai(τ)Qi(1)) +
x2

2
uxx(0, τ) + x(f1(τ)− f0(τ)

−1

2
p0(τ)− 1

6
(p1(τ)− p0(τ)−

N∑
i=1

ai(τ)Qi(1))−

−
N∑
i=1

ai(τ)Si(1)) + u(0, τ). (18)

On simplifying (18) and using the boundary conditions (3) and (4), we get

u(x, τ) = (1− x)f0(τ) + xf1(τ) + p0(τ)(−x
3

+
x2

2
− x3

6
) + p1(τ)(−x

6
+
x3

6
)

+
N∑
i=1

ai(τ)(Si(x)− xSi(1) +Qi(1)(
x

6
− x3

6
)). (19)

Equation (19) is Haar wavelet approximation of the fourth order parabolic PDE
(1) with initial condition (2) and boundary conditions (3), (4). Now, to find
the unknown Haar wavelet coefficients ai(τ), we discretize time derivative by
finite-difference method as follows:

uττ (xk, τj+1) =
u(xk, τj+1)− 2u(xk, τj) + u(xk, τj−1)

4τ2
. (20)

Now using (10) and (20) in (1), we get,

u(xk, τj+1)− 2u(xk, τj) + u(xk, τj−1)

4τ2
+ µ

N∑
i=1

ai(τj+1)Hi(xk) = f(xk, τj). (21)
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Using the values of u(xk, τj+1), u(xk, τj) and u(xk, τj−1) from equation (19) in
equation (21), which are solution of (1) at different time levels j + 1, j and j − 1
respectively, then we get

(1− x)f0(τj+1) + xf1(τj+1) + p0(τj+1)(−
x

3
+
x2

2
− x3

6
)+

+p1(τj+1)(−
x

6
+
x3

6
) +

N∑
i=1

ai(τj+1)(Si(x)− xSi(1)+

+Qi(1)(
x

6
− x3

6
))− 2((1− x)f0(τ) + xf1(τ) + p0(τ)(−x

3
+
x2

2
− x3

6
)+

+p1(τ)(−x
6

+
x3

6
) +

N∑
i=1

ai(τ)(Si(x)− xSi(1) +Qi(1)(
x

6
− x3

6
)))+

+(1− x)f0(τj−1) + xf1(τj−1) + p0(τj−1)(−
x

3
+
x2

2
− x3

6
)+

+p1(τj−1)(−
x

6
+
x3

6
) +

N∑
i=1

ai(τj−1)(Si(x)− xSi(1) +Qi(1)(
x

6
− x3

6
))+

+4τ2µ
N∑
i=1

ai(τj+1)Hi(xk) = 4τ2f(xk, τj) (22)

On simplification, we get the following system of linear equation,

N∑
i=1

ai(τj+1)(Wi(xk) +4τ2µHi(xk))− 2
N∑
i=1

ai(τj)Wi(xk) +
N∑
i=1

ai(τj−1)Wi(xk)

= 4τ2f(xk, τj)−A(xk, τj+1) + 2A(xk, τj)−A(xk, τj−1). (23)

where
W = Si(x)− xSi(1) +Qi(1)(x6 −

x3

6 ), and

A(xk, τj) = (1−xk)f0(τj)+xkf1(τj)+p0(τj)(−xk
3 +

x2k
2 −

x3k
6 )+p1(τj)(−xk

6 +
x3k
6 )

On expanding the system (23), we get the following matrix formulation


−2W W + µ4τ2H 0 0 0 0 ... 0 0

W −2W W + µ4τ2H 0 0 0 ... 0 0

0 W −2W W + µ4τ2H 0 0 ... 0 0

0 0 W −2W W + µ4τ2H 0 ... 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

0 0 0 . . . W −2W W + µ4τ2H
0 0 0 . . . 0 W −2W


×
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×



a0
a1
a2
.
.
.
.

aN−1
aN


=



V0
V1
V2
.
.
.
.

VN−1
VN


(24)

where a1, a2 ... aN and V1,....VN are vectors of size N × 1. We solve system
(24) with the help of equation (2) and obtained unknown finite difference Haar
wavelet coefficients ai(τj) at each time level and then we put them in equation
(19) to find the approximate finite-difference Haar wavelet solution of equation
(1) with initial condition (2) and boundary conditions (3) and (4).

3.1. Convergence and Error Analysis

Lemma 1. Let u ∈ L2([0, 1]) with bounded derivative and u(x) =
∑N

i=1 aiHi(x)is
the Haar wavelet series then, the Haar wavelet coefficient ai satisfies the following
inequality

‖ai‖2 ≤M2−(3j−2)/2, where |u′(x)| ≤M (25)

Proof:See [16]

Lemma 2. If u(x) is the exact and uJ(x) is the approximate solution of the
equation (1) then error norm satisfies the following inequality

‖EJ‖2 = ‖u(x)− uJ(x)‖ ≤M
√
C

2−3(2
j)−1

1− 2−3/2
, where |u′(x)| ≤M (26)

Proof:See [16]

4. Numerical Examples

In this section, we demonstrate two examples of fourth order parabolic PDE to
show the applicability, accuracy and efficiency of the Haar wavelet finite difference
method. We have computed maximum absolute error (MAE) and compared with
parametric septic splines [7], sextic spline [8], parametric quintic spline method
[9] and Quintic B-Spline method [10].
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Problem 1. Consider the equation (1) with initial and boundary conditions (2)-
(4), where µ = 1, f(x, τ) = (π4 − 1)sin(πx)cos(τ), g0(x) = sin(πx), g1(x) = 0,
f0(τ) = f1(τ) = p0(τ) = p1(τ) = 0, τ ≥ 0.
The exact solution is

u(x, τ) = sin(πx)cos(τ).

MAE obtained by finite-difference Haar wavelet method with different reso-
lutions level have been given in the Table 1.1. Also, we have plotted the graph
of exact and finite-difference Haar wavelet solution which is given in Figures 1-5.

Table 1.1 MAE obtained by finite-difference Haar wavelet method for different
values of space resolution level J and time step level N for problem 1.

J/N 10 20 50 100 500

3 1.4401e-09 3.4167e-12 9.6952e-16 1.1342e-15 5.5816e-15
4 7.7223e-10 1.8318e-12 5.2234e-16 1.1269e-15 5.0187e-15
5 3.9921e-10 9.4687e-13 4.1200e-16 7.3238e-16 3.2813e-15
6 2.0288e-10 4.8119e-13 1.1604e-15 2.1908e-15 4.4784e-15
7 1.0226e-10 2.4254e-13 1.4687e-15 1.1858e-15 6.2811e-15
8 5.1336e-11 1.2175e-13 4.5647e-16 6.0378e-16 4.8669e-15

Table 1.2 MAE obtained by parametric septic splines [7], sextic spline [8], para-
metric quintic spline method [9] and Quintic B-Spline method [10] for time level
200 and different space level J for problem 1.

J [10] [7] [8] [9]

10 — 2.0500e-6 2.1300e-05 4.4000e-04
16 — 4.0400e-7 9.0700e-06 7.2000e-05
25 1.8155e-03 — — —
65 5.6442e-03 — — —
100 3.7583e-03 — — —
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Figure 1. Surface plot of exact and finite-difference Haar wavelet solution of problem
1 with J = 3 and time step N = 10 .

Figure 2. Mesh plot of exact and finite-difference Haar wavelet solution of problem 1
with J = 3 and time step N = 10.

Figure 3. Surface plot of exact
and finite-difference Haar wavelet solution of problem 1 with J = 4 and time step N = 10.
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Figure 4. Surface plot of finite-difference Haar wavelet solution of problem 1 with
J = 5 and time step N = 50.

Figure 5. Surface plot of exact and finite-difference Haar wavelet solution of problem
1 with J = 5 and time step N = 100 .

Problem 2. Consider the equation (1) with initial and boundary conditions
(2)- (4), where µ = 1, f(x, τ) = (π4 + 1)eτsin(πx), g0(x) = sin(πx), g1(x) =
sin(πx), f0(τ) = f1(τ) = p0(τ) = p1(τ) = 0, τ ≥ 0.
The exact solution is

u(x, τ) = eτsin(πx).

MAE obtained by finite-difference Haar wavelet method with different resolutions
level have been given in the Table 2.1. Further, the surface and mesh plot of exact
and finite-difference Haar wavelet solution is given in Figures 6-10.
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Table 2.1 MAE obtained by finite-difference Haar wavelet method for different
values of space resolution level J and time step level N for problem 2.

J/N 10 20 50 100 500

3 6.2213e-08 9.7187e-10 3.9807e-12 6.2942e-14 4.6066e-15
4 3.1220e-08 4.8770e-10 1.9981e-12 3.1730e-14 5.4745e-15
5 1.5624e-08 2.4407e-10 1.0001e-12 1.5796e-14 3.8624e-15
6 7.8137e-09 1.2206e-10 5.0075e-13 9.4851e-15 4.5439e-15
7 3.9071e-09 6.1034e-11 2.5001e-13 5.1016e-15 5.4639e-15
8 1.9536e-09 3.0518e-11 1.2520e-13 2.3277e-15 5.7485e-15

Table 2.2 MAE obtained by Quintic B-Spline method [10] for time step level 20
and different values of space resolution level J for problem 2.

J [10]

10 9.9400e-04
50 7.7250e-04
100 9.7375e-05

Figure 6. Surface plot of exact and finite-difference Haar wavelet solution of problem
2 with J = 3 and time step N = 10 .
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Figure 7. Mesh plot of exact and finite-difference Haar wavelet solution of problem 2
with J = 4 and time step N = 100.

Figure 8. Surface plot of exact
and finite-difference Haar wavelet solution of problem 2 with J = 4 and time step N = 10.

Figure 9. Surface plot of finite-difference Haar wavelet solution of problem 2 with
J = 5 and time step N = 50.

Figure 10. Surface plot of exact and finite-difference Haar wavelet solution of problem
2 with J = 6 and time step N = 100 .

Conclusion

We have solved fourth order parabolic PDE using finite-difference Haar wavelet
method and obtain the approximate solution. We compared our results with the
existing methods such as parametric septic splines [7], sextic spline [8], parametric
quintic spline method [9] and Quintic B-Spline method [10]. The tables 1.1− 2.2
clearly indicate that Haar wavelet produces better results.
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