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A Note on the (λ, v)αh−Statistical Convergence of
the Functions Defined on the Product of Time Scales

M. Başarır

Abstract. In this paper, we have introduced the concepts (λ, v)αh−density of a subset of
the product of time scales T2 and (λ, v)αh−statistical convergence of order α (0 < α ≤ 1)
of ∆− measurable function f defined on the product time scale with the help of modulus
function h and λ = (λn), v = (vn) sequences. Later, we have discussed the connection
between classical convergence, λ-statistical convergence and (λ, v)αh−statistical conver-
gence. In addition, we have seen that f is strongly (λ, v)αh−summable on T then f is
(λ, v)αh−statistical convergent of order α .

Key Words and Phrases: time scale, statistical convergence, modulus function, λ
sequence, order α.

2010 Mathematics Subject Classifications: 40A05, 47H10, 46A45

1. Introduction

The concept of statistical convergence which is a generalization of classical
convergence was first given by Zygmund [1] and later were introduced indepen-
dently by Steinhaus [2] and Fast [3]. This concept is discussed under different
names in different spaces ([4],[5],[6],[7],[8],[9],[10], [11],[12]). Mursaleen [13] intro-
duced the notion of λ-statistical convergence by using the sequence λ = (λn) and
then the λ-statistical convergence on the time scales was introduced by Yılmaz
et al [14]. The order of statistical convergence of a sequence of positive linear op-
erators was introduced by Gadjiev and Orhan [15]. Later, Çolak [16] introduced
and investigated the statistical convergence of order α (0 < α ≤ 1) and strong
p-Cesaro summability of order α of number sequences.

The time scale calculus was first introduced by Hilger in his Ph.D. thesis in
1988 (see [17],[18],[19]). In later years, the integral theory on time scales was
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given by Guseinov [20] and further studies were developed by Cabada-Vivero [21]
and Rzezuchowski [7]. Recently, Seyyidoğlu and Tan [8] defined the density of
the subset of the time scale. By using this definition, they gave ∆−convergence
and ∆−Cauchy concepts for a real valued function defined on the time scale.
On the other side, the modulus function was first introduced by Nakano [22].
Aizpuru et al.[23] defined a new density concept with the help of a modulus
function and obtained a new convergence concept between ordinary convergence
and statistical convergence. Gürdal and Özgür [24] introduced ideal h-statistical
convergence and ideal h-statistical Cauchy concepts in normed space using the
modulus function h and ideals.

In this paper, we have aimed to define (λ, v)αh−statistical convergence of ∆−
measurable functions of order α (0 < α ≤ 1) defined on the product time scale
by using modulus function h, λ = (λn) and v =(vr) sequences in light of works
of Çınar et al [25], Seyyidoğlu and Tan [8] and [20].

2. Preliminaries

The concept of statistical convergence is based on the asymptotic (natural)
density of a subset B in N (the set of positive integers) which is defined as

δ (B) = lim
n→∞

|{k ≤ n : k ∈ B}|
n

, (1)

where |B| denotes the number of elements in B (see [3],[5],[4]). It has been gener-
alized to α-density of a subset B ⊂ N and given the definition of α−statistically
convergence (α ∈ (0, 1]) by Çolak [16]. The notion of λ-statistical convergence
was introduced by Mursaleen [13] using the sequence λ = (λn) which is a non-
decreasing sequence of positive numbers tending to ∞ as n → ∞ such that
λn+1 ≤ λn + 1, λ1 = 1, and In = [n − λn + 1, n] . Lets denote by Λ the set of
such λ = (λn) sequences. The λ- density of B ⊂ N is defined by

δλ(B) = lim
n→∞

|{k ∈ In : k ∈ B}|
λn

(2)

and δλ(B) reduces to the natural density δ(B) in case of λn = n for all n ∈ N
(see [14]). A sequence x = (xn) is said to be λ- statistically convergent to L of
order α (α ∈ (0, 1]) if for every ε > 0,

lim
n→∞

|{k ∈ In : |xk − L| ≥ ε}|
(λn)α

= 0. (3)

In this case, we write sλα − lim
n→∞

xn = L (see [26],[27],[13],[28],[29],[30],[14]) and

we denote by Sλα the set of λα- statistically convergent sequences of order α. If
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λn = n, Sλα reduces to Sα the set of statistically convergent number sequences of
order α. For applications of statistical convergence and λ-statistical convergence,
see [31], [32].

On the other hand, we recall that h : [0,∞) → [0,∞) is called modulus
function, or simply modulus, if it is satisfies:

(1) h(s) = 0 if and only if s = 0,

(2) h (s+ p) ≤ h (s) + h (p) for every s, p ∈ [0,∞),

(3) h is increasing,

(4) h is continuous from the right at 0.

A modulus may be bounded or unbounded . For instance, h(x) = xp, where
0 < p ≤ 1, is unbounded, but h(x) = x

1+x is bounded (see [33],[34]).

Let h be an unbounded modulus function. The λαh−density of order α (0 <
α ≤ 1) of a set B ⊆ N is defined by

δλ
α
h (B) = lim

n→∞

h(|{n− λn + 1 ≤ k ≤ n : k ∈ B}|)
h((λn)α)

(4)

whenever this limit exists.

In this study, we shall give a notion of (λ, v)αh-statistical convergence on any
time scales product and its properties using the sequences λ, v ∈ Λ, modulus
function h and any real number α (0 < α ≤ 1). Throughout this paper, we
consider the time scales which are unbounded from above and have a minimum
point. Lets remember some concepts.

A nonempty closed subset of R is called a time scale and is denoted by T. We
suppose that a time scale has the topology inherited from R with the standard
topology. For t ∈ T, we consider the forward (backward) jump operator σ, ρ :
T→ T by σ (t) := inf {s ∈ T : s > t} , ρ (t) := sup {s ∈ T : s < t}. and graininess
function : T → [0,∞) by µ(t) := σ(t) − t. In this definition, we take inf ∅ =
supT. For t ∈ T with a ≤ b, it is defined the interval [a, b] in T by [a, b] =
{t ∈ T : a ≤ t ≤ b} .

Let T be a time scale. Denote by F the family of all left-closed and right-open
intervals of T of the form [a, b) = {t ∈ T : a ≤ t < b} with a, b ∈ T and a ≤ b. It
is clear that the interval [a, a) is an empty set, F is semiring of subsets of T. Let
m : F → [0,∞) be the set function on F that assigns to each interval [a, b) its
length b − a, m ([a, b)) = b − a. Then m is a countably additive measure on F .
We denote by µ∆ the Caratheodory extension of the set function m associated
with family F (for the Caratheodory extension see [8]) and is denoted by µ∆,
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the Lebesgue ∆-measure on T, and that is a countably additive measure . In
this case, it is known that if a ∈ T− {maxT}, then the single point set {a} is ∆-
measurable and µ∆(a) =σ (a)−a. If a, b ∈ T and a ≤ b then µ∆(a, b)T = b−σ (a) .
If a, b ∈ T− {maxT}, a ≤ b ; µ∆(a, b]T = σ(b)−σ (a) and µ∆[a, b]T= σ(b)−a. It
can be easily seen that the measure of a subset of N is equal to its cardinality
(see [8],[6]).

Suppose that T1 and T2 are times scales and σj , ρj and µj are forward (back-
ward) jump operators and graininess functions on Tj for 1 ≤ j ≤ 2, respectively.
Set T2 = T1×T2= {t =(t1, t2) : t1 ∈ T1 and t2 ∈ T2}. T2 is called product (or
2-dimensional) time scale . T2 is complete metric space with the metric defined
by

d(t, r) = (
2∑
i=1

|ti − ri|2)
1
2 for t, r ∈ T2.

Recently, the λ-statistical convergence on time scale was introduced by Yılmaz
et al [35] and then the notion of (λ, v)−statistical convergence of ∆-measurable
real-valued function defined on product time scale was introduced by Çınar et
al [25]. They also introduced the concept of the (λ, v)−density of Ω on T2 as
follows.

Let λ, v ∈ Λ be two sequences of positive real numbers. Throughout the paper
we denote A = {[t− λt + t0, t]T1×[r − vr + r0, r]T2} , B = {[t0, t]T1×[r0, r]T2},
where t0 = minT1, r0 = minT2. Suppose that Ω be a ∆-measurable subset of
T2 = T1×T2. Then, the set Ω (t, r, λ, v) is defined by Ω (t, r, λ, v) =: {(s, u) ∈
A : (s, u) ∈ Ω} for (t, r) ∈ T2. That is Ω (t, r, λ, v) = Ω ∩ A . In this case, the
density of Ω on T2 is defined as

δ
(λ,v)
T2 (Ω) = lim

t→∞

µ∆(Ω(t, r, λ, v))

µ∆(A)
(5)

provided that the limit exists. In case of T2 = N2, this reduces to the classical
concept of the product asymptotic density.

Let f : T2→ R be a ∆− measurable function. It is said that f is (λ, v)-
statistically convergent to a real number L on T2 if

lim
(t,r)→∞

µ∆({(s, u) ∈ A : |f(s, u)− L| ≥ ε})
µ∆(A)

= 0 (6)

for every ε > 0. In this case, we can write s
(λ,v)
T2 − lim

(t,r)→∞
f(t, r) = L. The set

of all (λ, v)− statistically convergent functions on T2 will be denoted by S
(λ,v)
T2 .
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If one take λt = t and vr = r in (6), we get the classical statistically convergent
function to a real number L on T2, for the function f , which is defined as :

lim
(t,r)→∞

µ∆({(s, u) ∈ B : |f(s, u)− L| ≥ ε})
µ∆(B)

= 0

3. Main Results

Definition 1. Let Ω be a ∆-measurable subset of T2 = T1×T2, h be a mod-
ulus function, α be any real number (0 < α ≤ 1) and be the set Ω(t, r, λ, v) =:
{(s, u) ∈ A : (s, u)∈ Ω} for (t, r) ∈ T2 = T1×T2 . In this case, the (λ, v)αh-density
of Ω on T2 of order α is defined by

δ
(λ,v)αh
T2 (Ω) = lim

(t,r)→∞

h(µ∆(Ω(t, r, λ, v)))

h((µ∆(A))α)

provided that the limit exists.

When α = 1, the (λ, v)αh−density of Ω on T2 returns to the (λ, v)h−density

and the density will denoted by δ
(λ,v)h
T2 (Ω). In case h(x) = x, (λ, v)αh−density

becomes (λ, v)α−density and is denoted by δ
(λ,v)α

T2 (Ω). If α = 1 and h(x) = x,
then (λ, v)αh−density reduces to (λ, v)−density of Ω on T2which is denoted by

δ
(λ,v)
T2 (Ω). We can easily get δ

(λ,v)αh
T2 (Ω) = δ

α
h

T2 (Ω) if λt = t and vr = r and

δ
(λ,v)αh
T2 (Ω) = δ

(λ,v)α

T2 (Ω) if we take h(x) = x on T2. If α = 1 , h(x) = x, λt = t
and vr = r then (λ, v)αh−density reduces to ∆−density of Ω on T2

Definition 2. Let f : T2→ R be a ∆− measurable function. Then, we call
that f is (λ, v)αh−statistically convergent function to a real number L of order α
(0 < α ≤ 1) on T2 if

lim
(t,r)→∞

h(µ∆({(s, u) ∈ A : |f(s, u)− L| ≥ ε}))
h((µ∆(A))α)

= 0 (7)

for every ε > 0.

In this case, we write s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = L. The set of all (λ, v)αh−

statistically convergent functions on T2 will be denoted by S
(λ,v)αh
T2 .

As will be noted that, when α = 1, (λ, v)αh−statistically convergent function
on T2 of order α returns to (λ, v)h−statistically convergent function. If α =
1, h(x) = x, λt = t and vr = r then (λ, v)αh−statistically convergent function



20 M. Başarır

on T2 reduces to ∆−convergent function on T2 and which is denoted by ∆ −
lim

(t,r)→∞
f(t, r) = L.

The equality δ
(λ,v)αh
T2 (Ω) + δ

(λ,v)αh
T2

(
T2rΩ

)
= 1 does not hold for α (0 < α ≤ 1)

and an unbounded modulus h, in general. For instance, if we take h(x) = xp,

0 < p ≤ 1, 0 < α < 1 and Ω = {(2n, 2m) : n,m ∈ N}, then δ
(λ,v)αh
T2 (Ω) =

δ
(λ,v)αh
T2

(
T2rΩ

)
= ∞. Also, finite sets have zero (λ, v)αh−density for any un-

bounded modulus h and α (0 < α ≤ 1) (see [27],[39]).

Lemma 1. Let α be any real number (0 < α ≤ 1) , Ω be a ∆-measurable subset

of T2 = T1×T2 , h be an unbounded modulus function . If δ
(λ,v)αh
T2 (Ω) = 0 then

δ
(λ,v)αh
T2

(
T2rΩ

)
6= 0.

Proof. Let α (0 < α ≤ 1) be any given real number and the equality

δ
(λ,v)αh
T2 (Ω) = 0 be valid for any unbounded modulus h. Suppose that δ

(λ,v)αh
T2 (TrΩ) =

0. Let us say Ω(t, r, λ, v) = Ω(t, r) ∩ A for (t, r) ∈ T2 and T2rΩ(t, r, λ, v) =:
{(s, u) ∈ A : (s, u) ∈ T2rΩ(t, r)} for (t, r) ∈ T2. Since µ∆(A) = µ∆(Ω(t, r, λ, v))+
µ∆(T2rΩ(t, r, λ, v)) for (t, r) ∈ T2 and h is subadditive, we have

h(µ∆(A)) ≤ h( µ∆Ω(t, r, λ, v)) + h( µ∆(T2rΩ(t, r, λ, v))) (8)

Hence we may write

lim
(t,r)→∞

h(µ∆(A)

h((µ∆(A))α)
(9)

≤ lim
(t,r)→∞

h( µ∆λ
Ω(t, r, λ, v))

h((µ∆(A))α)
+ lim

(t,r)→∞

h( µ∆(TrΩ(t, r, λ, v)))

h((µ∆(A))α)
. (10)

Since δ
(λ,v)αh
T2 (Ω) = 0 and δ

(λ,v)αh
T2

(
T2rΩ

)
= 0, the right side of the inequality is

equal to zero and thus

lim
(t,r)→∞

h(µ∆(A))

h((µ∆(A)α)
= 0.

This is a contradiction. Because h(µ∆(A))
h((µ∆(A)α) ≥ 1 for α (0 < α ≤ 1) and therefore

lim
(t,r)→∞

h((µ∆(A))

h((µ∆(A)α)
≥ 1. (11)
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For any unbounded modulus h and 0 < α ≤ 1, if δ
(λ,v)αh
T2 (Ω) = 0 then

δ
(λ,v)α

T2 (Ω) = 0, but the inverse of this does not need to be true ([36]). Namely,
a set having zero α-density for some α (0 < α ≤ 1) might have non-zero
(λ, v)αh−density for some unbounded modulus h, with the same α. Similarly
a set having zero (λ, v)− density might have non-zero (λ, v)αh−density for some
unbounded modulus h and 0 < α ≤ 1. For example, let h(x) = log(x + 1)

and Ω = {{1, 4, 9, ...}×{1, 4, 9, ...}}. Then δT2 (Ω) = 0 and δ
(λ,v)α

T2 (Ω) = 0 for

1/2 < α ≤ 1, but δ
(λ,v)αh
T2 (Ω) ≥ δ(λ,v)h

T2 (Ω) = 1/2 and therefore δ
(λ,v)αh
T2 (Ω) 6= 0.

If Φ ⊆ T2 has zero (λ, v)αh−density for some unbounded modulus h and
for some α (0 < α ≤ 1), then it has zero (λ, v)α−density and hence zero
(λ, v)−density (see [35]).

Lemma 2. Let h be unbounded modulus and Φ ⊆ T2 . If 0 < α ≤ β ≤ 1 then

δ
(λ,v)βh
T2 (Φ) ≤ δ(λ,v)αh

T2 (Φ) .

Thus, for any unbounded modulus h and 0 < α ≤ β ≤ 1, if Φ has zero
(λ, v)αh−density in that case, it has zero (λ, v)βh−density. Specially, a set having
zero (λ, v)αh−density for some α (0 < α ≤ 1) has zero (λ, v)h−density. But,
the inverse is not correct. For instance, let h(x) = xp for 0 < p ≤ 1 and Φ =
{{1, 4, 9, ...}×{1, 4, 9, ...}}. Then

δ
(λ,v)h
T2 (Φ) = lim

(t,r)→∞

h(µ∆(Φ(t, r, λ, v)T2))

h(µ∆(A))
(12)

≤ lim
(t,r)→∞

h(d
√
µ∆(Φ(t, r, λ, v)T2)e)
h(µ∆(A))

(13)

= lim
(t,r)→∞

(d
√
µ∆(Φ(t, r, λ, v)T2)e)p

(µ∆(A)p
= 0

but, if we get 0 < α ≤ 1/2,

δ
(λ,v)αh
T2 (Φ) = lim

(t,r)→∞

h(µ∆(Φ(t, r, λ, v)T2)))

h((µ∆(A)α)
(14)

= lim
(t,r)→∞

(d
√
µ∆(Φ(t, r, λ, v)T2)e)p

((µ∆(A)α)p
=∞

where dre denotes the integer part of number r.
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Proposition 1. Let f, g : T2→ R be a ∆− measurable functions such that

s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = L1 and s

(λ,v)αh
T2 − lim

(t,r)→∞
g(t, r) = L2 and h and k be

modulus functions. Then the following statements hold:

(i) s
(λ,v)αh
T2 − lim

(t,r)→∞
(f(t, r) + g(t, r)) = L1 +L2,

(ii) s
(λ,v)αh
T2 − lim

(t,r)→∞
(cf(t, r)) = cL1 (c ∈ R)

(iii) If s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = L1, then s

(λ,v)α

T2 − lim
(t,r)→∞

f(t, r) = L1.

(iv) If s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = ` and s

(λ,v)αk
T2 − lim

(t,r)→∞
f(t, r) = m, then ` = m.

(v) lim
(t,r)→∞

f(t, r) = ` ⇒ s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = ` ⇒ ∆− lim

(t,r)→∞
f(t, r) = `.

Proof. It is easy to prove and we omit it.

Theorem 1. s
α
h

T2 ⊆ s
(λ,v)αh
T2 if and only if

lim inf
(t,r)→∞

h((µ∆(A)α)

h((µ∆((B)α)
> 0. (15)

Proof. For given ε > 0, we have

h(µ∆({(s, u)∈ B : |f(s, u)− L| ≥ ε})) ⊃
h(µ∆({(s, u)∈ A : |f(s, u)− L| ≥ ε})).

Then

h(µ∆({(s, u) ∈ B : |f(s, u)− L| ≥ ε}))
h((µ∆(B)α)

≥ h(µ∆({(s, u) ∈ A : |f(s, u)− L| ≥ ε}))
h((µ∆(B)α)

=
h(µ∆(A )α)

h((µ∆(B)α)

1

h(µ∆(A)α)
h(µ∆({(s, u) ∈ A : |f(s, u)− L| ≥ ε}))

Hence by using (15) and taking the limit as (t, r)→∞, we get s
α
h

T2− lim
(t,r)→∞

f(t, r)→

L implies s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = L.

The definition of p−strongly (W,λ, v) summable functions on T2 was given
by Çınat et al [25] as follows.
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Definition 3. Let f : T2→ R be a ∆− measurable function, λ, v ∈ Λ and 0 <
p < ∞ . We say that f is p−strongly (W,λ, v)−summable functions on T2 if
there exists L ∈ R such that

lim
(t,r)→∞

1

(µ∆(A))

∫∫
A

|f(s, u)− L|p∆s ∆u = 0. (16)

The set of all p−strongly (W,λ, v)−summable functions on T2 is denoted by
[W,λ, v]pT2 .

We need to emphasize that measure theory on time scales was first constructed
by Guseinov [20] and Lebesque ∆− integral on time scales has been introduced
by Cabada and Vivero [38].

Definition 4. Let f : T2→ R be a ∆− measurable function, λ, v ∈ Λ. We say
that f is strongly (W, (λ, v)αh)-summable function on T2 if there exists some L ∈ R
such that

lim
(t,r)→∞

1

(µ∆(A))α

∫∫
A

h(|f(s, u)− L|) ∆s ∆u = 0. (17)

In this case we write (W, (λ, v)αh)T2− lim
(t,r)→∞

f(t, r) = L. The set of all strongly

(W, (λ, v)αh)T2−summable functions on T2 will be denoted by [W, (λ, v)αh ]T2 . If we
take h(x) = xp (0 < p <∞) and α = 1 then we get [W, (λ, v)p]T2 , the set of all
p−strongly (W,λ, v)−summable functions on T2 (see [14]).

Lemma 3. Let f : T2→ R be a ∆− measurable function and Ω(t, r, λ, v, h) =

{(s, u) ∈ A : h( |f(s, u)− L|) ≥ ε} for ε > 0. In this case , we have

h(µ∆(Ω(t, r, λ, v, h))) ≤ 1

ε

∫∫
Ω(t,r,λ,v,h)

h(|f(s, u)− L|) ∆s ∆u (18)

≤ 1

ε

∫∫
A

h(|f(s, u)− L|) ∆s ∆u (19)

Proof. It can be proved by using similar method with [39].

Theorem 2. Let f : T2→ R be a ∆− measurable function, λ, v ∈ Λ, L ∈ R.
Then we get
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(i) If f is strongly (W, (λ, v)αh)T2 −summable function to L, then s
(λ,v)αh
T2 −

lim
(t,r)→∞

f(t, r) = L.

(ii) If s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = L , f is a bounded function and h unbounded

modulus such that h(x) − x ≥ 0, then f is strongly (W, (λ, v)αh)−summable
function to L.

Proof. (i) Let f is strongly (W, (λ, v)αh)−summable function to L. For given
ε > 0, let Ω(t, r, λ, v, h) = { (s, u) ∈ A : h(|f(s, u)− L|) ≥ ε } on time scale T2.
Then, it follows from lemma 3

ε h(µ∆(Ω(t, r, λ, v, h))) ≤
∫∫
A

h(|f(s, u)− L|) ∆s ∆u.

Dividing both sides of the last equality by h(µ∆(A)α) and taking limit as (t, r)→
∞, we obtain

ε lim
(t,r)→∞

h(µ∆(Ω(t, r, λ, v, h)))

h((µ∆(A)α)
(20)

≤ lim
(t,r)→∞

1

h((µ∆(A)α)

∫∫
A

h(|f(s, u)− L|) ∆s ∆u = 0

which yields that s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) = L.

(ii) Let f be bounded and s
(λ,v)αh
T2 −statistically convergent to L on T2. Then,

there exists a positive number M such that |f(t, r)− L| ≤ M for all (t, r) ∈ T2,
and also

lim
(t,r)→∞

h(µ∆(Ω(t, r, λ, v, h)))

h((µ∆(A)α)
= 0

where Ω(t, r, λ, v, h) = { (s, u) ∈ A : h(|f(s, u)− L|) ≥ ε } as stated before. Since

∫∫
A

h(|f(s, u)− L|) ∆s ∆u

=

∫∫
Ω(t,r,λ,v,h)

h(|f(s, u)− L|) ∆s ∆u (21)
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+

∫∫
T2/Ω(t,r,λ,v,h)

h(|f(s, u)− L|) ∆s ∆u (22)

< (h(M))

∫∫
Ω(t,r,λ,v,h)

∆s ∆u+ ε

∫∫
T2\Ω(t,r,λ,v,h

∆s ∆u

≤ (h(M) (h(µ∆(Ω(t, r, λ, v, h)))) + ε (h(µ∆(A)))

we obtain

lim
(t,r)→∞

1

h((µ∆(A)α)

∫∫
A

h(|f(s, u)− L|) ∆s ∆u (23)

≤ [(h(M)] lim
(t,r)→∞

h(µ∆(Ω(t, r, λ, v, h)))

h((µ∆(A)α)
+ ε lim

(t,r)→∞

h(µ∆(A))

h((µ∆(A)α)

Since ε > 0 is arbitrary, the proof follows from (20) and (23).

Theorem 3. Let f be a ∆− measurable function. Then s
(λ,v)αh
T2 − lim

(t,r)→∞
f(t, r) =

L if and only if there exists a ∆− measurable Ω ⊆ T2 such that δ
(λ,v)αh
T2 (Ω) = 1

and lim
(t,r)→∞

h(|f(t, r)− L|) = 0 , ((t, r) ∈ Ω(t, r, λ, v, h)).

Proof. It can be easily proved by using similar way in Theorem 3.9 of Turan
and Duman (see [39]).

Acknowledgement

The author thanks to the referees for their valuable suggestions which led to
the improvement of this paper.

References

[1] A. Zygmund, Trigonometric Series, United Kingtom: Cambridge, Univ.
Press, 1979.

[2] H. Steinhaus, Sur la convergence ordinarie et la convergence asimptotique,
Colloq. Math., 2, 1951, 73-74.

[3] H. Fast, Sur la convergence statitique, Colloq. Math., 2, 1951, 241-244.



26 M. Başarır
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[26] M. Et and H. Şengül. On (∆m, I)-lacunary statistical convergence of order
α. J. Math. Anal. 7(5), 78-84, 2016.
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[29] H. Şengül, Some Cesàro-type summability spaces defined by a modulus func-
tion of order (α, β), Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat.,
66(2), 2017, 80-90.
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